Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Regulation of Polysulfide Adsorption and LiF-rich Interface Chemistry to Achieve High-performance PEO-based Lithium-Sulfur

Battery

Huanhuan Duan^{*a*}, Leiping Liao^{*a*}, Ran Bi^{*a*}, Yuanfu Deng^{*a,b,**}, Guohua Chen^{*c*}

^a Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Peoples R China;
^b Guangdong Provincial Research Center of Electrochemical Energy Engineering, South China University of Technology, Guangzhou, 510640, Peoples R China;
^c School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, Peoples R China.

Corresponding author.

E-mail address: chyfdeng@scut.edu.cn (Y.F. Deng).

Figure S1. XRD curves of (a) S powder and (b) S/C composite.

Figure S2. SEM image of S/C composite.

Figure S3. The XRD pattern of MgF₂ nanoparticles and corresponding crystal planes.

Figure S4. XRD curve of PEO powder.

Figure S5. (a) Ionic conductivities for the PEO-15%LLZTO-x%MgF₂ (x = 0, 2, 5, and 8) SSEs; (b) The activation energy calculated from the ionic conductivity curves of PEO-15%LLZTO and PEO-15%LLZTO-5%MgF₂ SSEs at different sections (30 - 55°C and 55 - 70°C).

Figure S6. The electrochemical performances of Li/Li symmetrical batteries with the PEO-15%LLZTO-5%MgF₂ SSE at 50°C with current densities of (a) 0.1 mA cm⁻² and (b) 0.4 mA cm⁻².

Figure S7. (a) The charge-discharge curves of the ASSLSB with the PEO-15%LLZTO SSE under 50°C at 0.05 C; (b) Comparisons of the charge-discharge curves for the ASSLSBs assembled by the SSEs with or without the MgF₂ additive under 50°C at 0.05 C.

Figure S8. The charge-discharge curves of the ASSLSB with the PEO-15%LLZTO SSE under 60°C at a current density of 0.2 C.

Figure S9. Long-term cycle performance of ASSLSBs with the PEO-15%LLZTO-5%MgF₂ SSE under 60°C at 0.5 C.

Cathode	S loading / mg cm ⁻²	S content / %	Electrolyte	<i>T</i> / ⁰C	Current density	Capacity / mAh g ⁻¹ (cycle number)	Retention rate / %	Coulombic efficiency / %	Ref.
S@CTT/MXene	0.6	25	PEO-LiTFSI-PE	55	0.12 C	584 (100)	_	_	1
S-CNTs	0.28	42	Al ₂ O ₃ modified PEO	60	0.1 C 0.2 C	640 (120) 780 (100)	45.2 82.5	98.0 98.9	2
S/BC	1.2	48	PEO/PGA-LiTFSI- Py ₁₃ TFSI	50	0.2 C	541 (100)	89	—	3
S-super P- PEO/LiTFSI	0.6	40	C-S-E/4000k	55	0.2 C	768 (100)	83	98.0	4
S/BP-2000	_	_	PEO-PAN-LiTFSI	70	0.1 C	766 (75)	61.8	~100.0	5
Li ₂ S@TiS ₂ -super P-PEO/LiTFSI	0.2-1.2		PI@PEO/LiTFSI	80	0.8 C	333 (150)	68	98.6	6
Li ₂ S@AQT- PEO/LiTFSI	0.2-0.7		PE@PEO/LiTFSI	60	0.1 C	878 (30)	87.9	98.9	7

Table S1. Electrochemical performances of lithium-sulfur batteries with PEO-based solid-state electrolytes.

			5%MgF2	60	0.2 C	732 (60)	92	98.3	work
S/KB-CB-CNT	0.5	45	PEO-LLZTO-	60	0.2 C	780 (40)	98	99.7	1 1115
				50	0.05 C	874 (40)	90	98.5	T I •
S-KB-CNT- PEO/LiTFSI	0.5	50	PFA PEO	60	~0.06 C	627 (100)	53.6	98.0	10
				75		117 (50)	~10	88.6	
S	0.41	70	PEO-LiTFSI-LLZTO	65	~0.07 C	106 (50)	~10	89.7	9
				55		168 (50)	35	90.5	
				45		440 (50)	136.6	97.1	
S/KB	0.5	56	with CGS interlayer	60	60 0.2 C	799 (50)	95.9	85.0	8
			PEO-LiTFSI-LLZTO						

Note: for the cathode with S as active material, 1 C = 1675 mA g^{-1} ; for the cathode with Li₂S as active material, 1 C = 1166 mA g^{-1} . "—" indicates that the data is not given.

Figure S10. (a) SEM image of the cycled lithium metal surface from the battery with the PEO-15%LLZTO-5%MgF₂ SSE; (b) SEM image of cycled lithium metal surface from the battery with the PEO-15%LLZTO SSE.

Figure S11. XPS spectra of the cycled lithium metal surface from the battery with the PEO-15%LLZTO-5%MgF₂ SSE: (a) C 1s; (b) N 1s; and those with PEO-15%LLZTO SSE: (c) C 1s; (d) N 1s.

Figure S12. Comparison of XPS spectra of (a) F 1s and (b) Mg 1s before and after sputtering under the same conditions (Ar⁺, 5 keV, 3 mm×3 mm); (c) The schematics of Ar⁺ sputtering process and SEI model (The LiF and Li_xMg alloy layers are used as the main components; other components such as lithium sulfide and lithium nitride are not considered here).

Figure S13. (a) Cycle performance and (b) the corresponding charge-discharge curves of the ASSLSB with the PEO-15%LLZTO-5%AlF₃ SSE under 60°C at a current

density of 0.2 C.

We used the same method to prepare the solid-state electrolyte (denoted as PEO-15%LLZTO-5%AlF₃) using AlF₃ as an additive. The ASSLSB's electrochemical performance at 0.2 C and 60°C is investigated. As shown in **Figure S13a**, the ASSLSB shows a high discharge specific capacity of 812 mAh g⁻¹, accompanied by a high Coulombic efficiency of about 100%. In addition, this battery also has a lower polarization voltage of 0.20 V (**Figure S13b**). As we excepted, the AlF₃ additive shows a similar effect on modifying the PEO-based electrolyte with MgF₂, due to their similar properties.

References:

- 1 Y. Zhang, Y. Wu, Y. Liu and J. Feng, *Chem. Eng. J.*, 2022, **428**, 131040.
- 2 Y. Shi, Z. Fan, B. Ding, Z. Li, Q. Lin, S. Chen, H. Dou and X. Zhang, J. *Electroanal. Chem.*, 2021, **881**, 114916.
- J. Li, H. Zhang, Y. Cui, H. Da, H. Wu, Y. Cai and S. Zhang, *Chem. Eng. J.*, 2023,
 454, 140385.
- 4 L. Wang, X. Yin, C. Jin, C. Lai, G. Qu and G. W. Zheng, *ACS Appl. Energy Mater.*, 2020, **3**, 11540-11547.
- J. Sheng, Q. Zhang, C. Sun, J. Wang, X. Zhong, B. Chen, C. Li, R. Gao, Z. Han and G. Zhou, *Adv. Funct. Mater.*, 2022, **32**, 2203272.
- K. Gao, X. Zheng, J. Wang, Z. Zhang, X. Xiao, J. Wan, Y. Ye, L. Y. Chou, H. K.
 Lee, J. Wang, R. A. Vila, Y. Yang, P. Zhang, L. W. Wang and Y. Cui, *Nano Lett.*, 2020, 20, 5496-5503.
- X. Gao, X. Zheng, Y. Tsao, P. Zhang, X. Xiao, Y. Ye, J. Li, Y. Yang, R. Xu, Z.
 Bao and Y. Cui, *J. Am. Chem. Soc.*, 2021, 143, 18188-18195.
- Y. Liu, H. Liu, Y. Lin, Y. Zhao, H. Yuan, Y. Su, J. Zhang, S. Ren, H. Fan and Y. Zhang, *Adv. Funct. Mater.*, 2021, **31**, 2104863.
- Y.-X. Song, Y. Shi, J. Wan, S.-Y. Lang, X.-C. Hu, H.-J. Yan, B. Liu, Y.-G. Guo,
 R. Wen and L.-J. Wan, *Energy Environ. Sci.*, 2019, 12, 2496-2506.
- Y. An, Y. Cheng, S. Wang and J. Yu, ACS Appl. Energy Mater., 2022, 5, 2786-2794.