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Supplementary Figures

Supplementary Figure 1: Structural pattern of domain knowledge in materials Science. It mainly 
includes two aspects: features and properties, Specifically, it has four layers: specific features 
layer(Ⅳ), abstract features layer(Ⅲ), local properties layer(Ⅱ) and global properties layer(Ⅰ).
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Supplementary Figure 2: Performance testing of material domain knowledge with different types. 
(a) The coefficient of determinations  on five experimental datasets. (b) Average absolute error 𝑅2

 on five experimental datasets. (c) Root mean square error  on five experimental datasets. 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸

As for S1, S2, S3, S4 and S5, they represent five groups of experimental datasets obtained from 
randomly sampling. It indicates that the external domain knowledge(no sample features) is difficult 
to fit the distribution pattern of real dataset. Compared with the knowledge graph constructed in this 
paper, the prediction performance of the internal knowledge graph(just sample features) is average. 
It proves that our hierarchical knowledge graph have an important guiding role in predicting 
material properties and can significantly improve model performance.

Supplementary Figure 3: Performance testing of material domain knowledge on different structures. 
(a) The  score of domain knowledge on different hierarchies, where “w/o X1” represents the 𝑅2

structural pattern without “specific features layer” (three layers), “w/o X2-Y1” represents the 
structural pattern without “abstract features layer” and “local properties layer” (two layers), “w/o 
X2” represents the structural pattern without “abstract features layer” (three layers), “w/o Y1” 
represents the structural pattern without “local properties layer” (three layers), and “OurKG” 
represents the structural pattern constructed in this paper (four layers). (b) Errors in performance 
prediction guided by different hierarchical structural patterns, including mean absolute error , 𝑀𝐴𝐸

mean squared error , and root mean square error . It illustrates the necessity and validity 𝑀𝑆𝐸 𝑅𝑀𝑆𝐸

of our structural pattern with a four-layer structure, while “w/o Y1” predicts well because there are 
fewer local properties to be excluded.
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Supplementary Figure 4: Performance quantification of seven different methods. From (a) and (d), 
Our JointMPP achieved optimal performance on the validation and testing sets, although the 
prediction effect on the training set was not optimal. This shows that the method proposed in this 
paper has good generalization performance and robustness. From the error quantification results of 
MAE and MSE, it can also be seen that the superiority of the proposed JointMPP.
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Supplementary Figure 5: Predictive performance of JointMPP with respect to different modules. 
Based on the model structure of JointMPP, the ablation experimental method is divided into four 
types: “similar_sample” means that the properties prediction is made by using similar samples and 
query samples. “only_know” indicates that predictions are made only from domain knowledge, and 
the node representation is initialized with sample features. “only_sample” represents training and 
testing using only the features of query samples. “know_sample” indicates that it employs material 
domain knowledge to enhance presentation learning for limited samples. Our JointMPP achieves 
the best fitted performance (  is 0.9358) and the lowest error ( ,  and  are all 𝑅2 𝑀𝐴𝐸 𝑀𝑆𝐸 𝑅𝑀𝑆𝐸
minimal). It illustrates that domain knowledge is critical to improving the performance of a limited 
sample learning approach in materials science.
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Supplementary Figure 6: The crystal structures 1 of halide double perovskite with A, B1+, B3+ and 
X positions are respectively shown in deepskyblue, light green, purple as well as pink (a). Element 
selection at each point of halide double perovskite (b).
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Supplementary Figure 7: Stability analysis of seven different methods (the evaluation metric is 
).𝑅𝑀𝑆𝐸
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Supplementary Tables
Supplementary Table 1: Descriptors of halide double perovskites1. It includes 540 samples, 33 
features and two property (heat of formation and band gap).

No. Features name Meanings
1 distance_a Distance between cation at A+ site
2 distance_b1 Distance between cation at B1+ site
3 distance_b2 Distance between cation at B3+ site
4 cubic Space group of crystal 1
5 ortho Space group of crystal 2
6 eleneg_a Electronegativity of A+site
7 eleneg_b1 Electronegativity of B1+ site
8 eleneg_b2 Electronegativity of B3+ site
9 eleneg_x Electronegativity of X- site
10 hoe_a Highest occupied energy level of A+ site
11 hoe_b1 Highest occupied energy level of B1+ site
12 hoe_b2 Highest occupied energy level of B3+ site
13 hoe_x Highest occupied energy level of X- site
14 ionenergy_a Ionization energy of A+ site
15 ionenergy_b1 Ionization energy of B1+ site
16 ionenergy_b2 Ionization energy of B3+ site
17 ionenergy_x Ionization energy of X- site
18 luep_a Lowest unoccupied energy level of A+ site
19 luep_b1 Lowest unoccupied energy level of B1+ site
20 luep_b2 Lowest unoccupied energy level of B3+ site
21 luep_x Lowest unoccupied energy level of X- site
22 rs_a Radius of s-orbital of A+ site
23 rs_b1 Radius of s-orbital of B1+ site
24 rs_b2 Radius of s-orbital of B3+ site
25 rs_x Radius of s-orbital of X- site
26 rp_a Radius of p-orbital of A+ site
27 rp_b1 Radius of p-orbital of B1+ site
28 rp_b2 Radius of p-orbital of B3+ site
29 rp_x Radius of p-orbital of X- site
30 rd_a Radius of d-orbital of A+ site
31 rd_b1 Radius of d-orbital of B1+ site
32 rd_b2 Radius of d-orbital of B3+ site
33 rd_x Radius of d-orbital of X- site
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Supplementary Table 2: Quantitative prediction results of data quality improvement methods on 
heat of formation and band gap, where K1 stands for “domain knowledge for sample enhancement”, 
K2 represents “domain knowledge for feature selection”, and K3 is “domain knowledge for feature 
extraction”. (train:test = 2:8)

heat of formation Band gap
Methods

R2 MAE MSE RMSE R2 MAE MSE RMSE
SVR 0.5874 0.1323 0.0243 0.1560 0.3983 0.5178 0.4292 0.6551 
DT 0.5988 0.1186 0.0237 0.1538 0.1121 0.5902 0.6334 0.7958 
RF 0.6738 0.1052 0.0192 0.1387 0.4373 0.4805 0.4014 0.6336 
RR 0.8793 0.0710 0.0071 0.0844 0.4713 0.4725 0.3772 0.6141 
XGBoost 0.6938 0.1017 0.0181 0.1344 0.3850 0.4927 0.4387 0.6624 
ANN 0.3585 0.1626 0.0378 0.1945 0.3387 0.5588 0.4718 0.6869 
SVR-K1 0.6482 0.1213 0.0208 0.1441 0.4124 0.5008 0.4192 0.6474 
DT-K1 0.6881 0.1059 0.0184 0.1357 0.2326 0.5446 0.5474 0.7399 
RF-K1 0.6808 0.1041 0.0188 0.1372 0.4443 0.4782 0.3964 0.6296 
RR-K1 0.8924 0.0654 0.0064 0.0797 0.5468 0.4546 0.3233 0.5686 
XGBoost-K1 0.7374 0.0900 0.0155 0.1245 0.4762 0.4521 0.3737 0.6113 
ANN-K1 0.8409 0.0804 0.0094 0.0969 0.6585 0.3909 0.2436 0.4936 
SVR-K2 0.6053 0.1288 0.0233 0.1526 0.4178 0.5107 0.4153 0.6444 
DT-K2 0.6268 0.1108 0.0220 0.1484 0.3142 0.5233 0.4892 0.6994 
RF-K2 0.6823 0.1020 0.0187 0.1369 0.4725 0.4631 0.3763 0.6134 
RR-K2 0.9556 0.0412 0.0026 0.0512 0.5990 0.4270 0.2861 0.5349 
XGBoost-K2 0.6725 0.1043 0.0193 0.1390 0.4241 0.4705 0.4108 0.6409 
ANN-K2 0.5110 0.1352 0.0289 0.1698 0.7101 0.3568 0.2068 0.4547 
SVR-K3 0.9118 0.0563 0.0052 0.0721 0.5163 0.4710 0.3450 0.5874 
DT-K3 0.8458 0.0727 0.0091 0.0954 0.3652 0.4883 0.4528 0.6729 
RF-K3 0.8860 0.0619 0.0067 0.0820 0.5185 0.4617 0.3435 0.5861 
RR-K3 0.9253 0.0544 0.0044 0.0664 0.4309 0.5025 0.4060 0.6371 
XGBoost-K3 0.8848 0.0615 0.0068 0.0824 0.4560 0.4786 0.3881 0.6229 
ANN-K3 0.9099 0.0595 0.0053 0.0729 0.5630 0.4447 0.3118 0.5583 
JointMPP 0.9358 0.0494 0.0038 0.0615 0.6265 0.4073 0.2664 0.5162 
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Supplementary Table 3: Prediction results of six classical machine learning methods1 in massive 
training samples. It mainly includes Decision Trees (DT), Artificial Neural Network (ANN), 
Random Forest (RF), Ridge Regression (RR), Support Vector Regression (SVR) and XGBoost. 
(train: test = 8: 2)  

Heat of formation Band gap
Methods

R2 MAE MSE RMSE R2 MAE MSE RMSE
SVR 0.9692 0.0373 0.0021 0.0459 0.6389 0.3771 0.265 0.5148
DT 0.9835 0.0258 0.0011 0.0336 0.7634 0.2349 0.1737 0.4167
RF 0.9923 0.018 0.0005 0.0229 0.8945 0.1906 0.0774 0.2782
RR 0.9888 0.019 0.0008 0.0277 0.7017 0.3532 0.219 0.4679
XGBoost 0.9986 0.0075 0.0001 0.0099 0.9046 0.1732 0.07 0.2647
ANN 0.9535 0.046 0.0032 0.0564 0.7562 0.327 0.179 0.423
JointMPP 0.9876 0.0226 0.0008 0.0291 0.7672 0.3239 0.1708 0.4133
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Supplementary Table 4: Stability quantization result of seven different methods, and the evaluation 
metric is  and . (  is the top table and  is the bottom table).𝑅2 𝑅𝑀𝑆𝐸 𝑅2 𝑅𝑀𝑆𝐸

Methods DT ANN RF RR SVR XGBoost Ours
Sample 1 0.5988 0.3585 0.6738 0.8793 0.5874 0.6938 0.9358
Sample 2 -2.5046 0.3451 0.5802 0.8398 0.4963 0.5266 0.8756
Sample 3 0.8256 0.5560 0.8060 0.8992 0.7290 0.6522 0.4322
Sample 4 0.5725 0.6754 0.6516 0.9683 0.8288 0.8023 0.8700
Sample 5 0.8539 0.4546 0.6853 0.6267 0.6072 0.4341 0.4721
Sample 6 0.1579 0.7890 0.7856 0.4677 0.7601 0.5191 0.7951
Sample 7 0.5489 0.8354 0.6994 0.4636 0.7299 0.1474 0.7242
Sample 8 -2.4395 0.1113 0.6500 0.5366 0.1297 0.2276 0.8818
Sample 9 0.6295 0.7860 0.6357 0.8956 0.7399 0.7335 0.8534
Sample 10 0.1894 0.7251 0.4910 0.8630 0.8252 0.4864 0.9113

Sample 1 0.1560 0.1538 0.1387 0.0844 0.1344 0.1945 0.0615 
Sample 2 0.1408 0.3713 0.1285 0.0794 0.2509 0.1605 0.0700 
Sample 3 0.1158 0.1904 0.0980 0.0706 0.1312 0.1482 0.1676 
Sample 4 0.0935 0.1477 0.1333 0.0403 0.1004 0.1287 0.0815 
Sample 5 0.1499 0.3567 0.2283 0.1462 0.1800 0.1767 0.1738 
Sample 6 0.1048 0.3449 0.0991 0.1561 0.1484 0.0983 0.0969 
Sample 7 0.2762 0.3869 0.2679 0.1752 0.2862 0.2935 0.1256 
Sample 8 0.1964 0.3904 0.1245 0.1433 0.1850 0.1984 0.0724 
Sample 9 0.1228 0.1465 0.1453 0.0778 0.1243 0.1114 0.0922 
Sample 10 0.0949 0.2043 0.1619 0.0840 0.1626 0.1190 0.0676 
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Supplementary Table 5: Experimental data2 for classifying perovskite materials.
Number Compound ABX Compound AB1B2X
train sets 460 734
test sets 116 184
Positive sample 313 868
Negative sample 263 50
Element A 49 35
Element B 67 ---
Element B1 --- 52
Element B2 --- 48
Element X 5 5

Data Resources: https://www.science.org/doi/10.1126/sciadv.aav0693#supplementary-materials.

https://www.science.org/doi/10.1126/sciadv.aav0693#supplementary-materials
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Supplementary Table 6: Perovskite classification result of ten different methods. Where, “LR1” and 
“LR2” stand for Logistic Regression with a L1 penalty term and a L2 penalty term respectively. 
“SVM” is Support Vector Machines, “KNN” is K Nearest Neighbors algorithm, “DT” is Decision 
Trees, “RF” is Random Forests, “ANN” is Artificial Neural Network, “GBDT” is Gradient Boosted 
Decision Trees and “ABC” is Ada Boost. (train: test = 8: 2)

Perovskite ABX Perovskite ABBX
Methods

Acc MP MR F1 Acc MP MR F1
LR1 88.79 88.88 88.21 88.48 95.65 85.56 64.71 70.30 
LR2 87.07 86.89 86.70 86.79 95.65 85.56 64.71 70.30 
SVM 87.07 86.77 86.94 86.85 95.65 85.56 64.71 70.30 
KNN 89.66 89.94 88.97 89.34 96.20 82.19 79.14 80.58 
DT 90.52 90.67 89.97 90.26 96.74 86.36 79.43 82.48 
RF 91.38 91.42 90.97 91.17 97.28 91.73 79.71 84.58 
ANN 89.66 89.94 88.97 89.34 95.65 85.56 64.71 70.30 
GBDT 91.38 92.73 90.24 90.99 96.20 84.30 74.43 78.41 
ABC 88.79 88.65 88.45 88.55 96.20 88.32 69.71 75.68 
JointMPP 86.21 86.09 85.70 85.87 95.65 85.56 64.71 70.30 
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Supplementary Methods
In order to verify the improvement effect of domain knowledge fusion on training data 
quality, this paper proposes three kinds of data preprocessing methods guided by 
domain knowledge. It mainly includes: 

①The Hadamard product of the correlation matrix (dimension is 90×33) of 

features and properties in the material domain knowledge and the original training 
sample matrix (dimension is 90×33) is used to obtain the training sample based on the 
correlation (dimension is 90×33). And then the two training samples are combined to 
increase the number of training dataset (dimension is 180×33); 

②The sparse feature correlation (dimension is 28) is obtained by assigning the 

feature correlation below a certain threshold in the domain knowledge as 0, and then 
the feature of the original training sample (dimension is 33) is screened by this 
correlation to get the key sample feature (dimension 28); 

③By using the dot product of the hierarchical correlation matrix (dimension is 

33×9) and the original training sample matrix (dimension is 90×33), the domain 
knowledge can achieve the aggregate extraction of the original sample features, and the 
final training data dimension is 90×9. 
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