Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary information:

A domain knowledge enhanced machine learning method to predict

the properties of halide double perovskite $A_2B^+B^{3+}X_6$

Xiao Wei^a, Yunong Zhang^a, Xi Liu^a, Junjie Peng^a, Shengzhou Li^b, Renchao Che^c, Huiran Zhang^{a, d, *}

^a School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China.

^b Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

^c Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, China.

^d Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, Shanghai University, Shanghai, 200444, China

*Corresponding author; E-mail: hrzhangsh@shu.edu.cn (H, Zhang).

Supplementary Figures

Supplementary Figure 1: Structural pattern of domain knowledge in materials Science. It mainly includes two aspects: features and properties, Specifically, it has four layers: specific features layer(IV), abstract features layer(III), local properties layer(II) and global properties layer(I).

Supplementary Figure 2: Performance testing of material domain knowledge with different types. (a) The coefficient of determinations R^2 on five experimental datasets. (b) Average absolute error *MAE* on five experimental datasets. (c) Root mean square error *RMSE* on five experimental datasets. As for S1, S2, S3, S4 and S5, they represent five groups of experimental datasets obtained from randomly sampling. It indicates that the external domain knowledge(no sample features) is difficult to fit the distribution pattern of real dataset. Compared with the knowledge graph constructed in this paper, the prediction performance of the internal knowledge graph(just sample features) is average. It proves that our hierarchical knowledge graph have an important guiding role in predicting material properties and can significantly improve model performance.

Supplementary Figure 3: Performance testing of material domain knowledge on different structures. (a) The R^2 score of domain knowledge on different hierarchies, where "w/o X1" represents the structural pattern without "specific features layer" (three layers), "w/o X2-Y1" represents the structural pattern without "abstract features layer" and "local properties layer" (two layers), "w/o X2" represents the structural pattern without "abstract features layer" (three layers), "w/o Y1" represents the structural pattern without "local properties layer" (three layers), and "OurKG" represents the structural pattern constructed in this paper (four layers). (b) Errors in performance prediction guided by different hierarchical structural patterns, including mean absolute error MAE, mean squared error MSE, and root mean square error RMSE. It illustrates the necessity and validity of our structural pattern with a four-layer structure, while "w/o Y1" predicts well because there are fewer local properties be excluded. to

Supplementary Figure 4: Performance quantification of seven different methods. From (a) and (d), Our JointMPP achieved optimal performance on the validation and testing sets, although the prediction effect on the training set was not optimal. This shows that the method proposed in this paper has good generalization performance and robustness. From the error quantification results of MAE and MSE, it can also be seen that the superiority of the proposed JointMPP.

Supplementary Figure 5: Predictive performance of JointMPP with respect to different modules. Based on the model structure of JointMPP, the ablation experimental method is divided into four types: "similar_sample" means that the properties prediction is made by using similar samples and query samples. "only_know" indicates that predictions are made only from domain knowledge, and the node representation is initialized with sample features. "only_sample" represents training and testing using only the features of query samples. "know_sample" indicates that it employs material domain knowledge to enhance presentation learning for limited samples. Our JointMPP achieves the best fitted performance (R^2 is 0.9358) and the lowest error (*MAE*, *MSE* and *RMSE* are all minimal). It illustrates that domain knowledge is critical to improving the performance of a limited sample learning approach in materials science.

Supplementary Figure 6: The crystal structures ¹ of halide double perovskite with A, B^{1+} , B^{3+} and X positions are respectively shown in deepskyblue, light green, purple as well as pink (a). Element selection at each point of halide double perovskite (b).

Supplementary Figure 7: Stability analysis of seven different methods (the evaluation metric is *RMSE*).

Supplementary Tables

No.	Features name	Meanings
1	distance_a	Distance between cation at A ⁺ site
2	distance_b1	Distance between cation at B ¹⁺ site
3	distance_b2	Distance between cation at B ³⁺ site
4	cubic	Space group of crystal 1
5	ortho	Space group of crystal 2
6	eleneg_a	Electronegativity of A+site
7	eleneg_b1	Electronegativity of B1+ site
8	eleneg_b2	Electronegativity of B ³⁺ site
9	eleneg_x	Electronegativity of X- site
10	hoe_a	Highest occupied energy level of A ⁺ site
11	hoe_b1	Highest occupied energy level of B1+ site
12	hoe_b2	Highest occupied energy level of B3+ site
13	hoe_x	Highest occupied energy level of X ⁻ site
14	ionenergy_a	Ionization energy of A ⁺ site
15	ionenergy_b1	Ionization energy of B ¹⁺ site
16	ionenergy_b2	Ionization energy of B ³⁺ site
17	ionenergy_x	Ionization energy of X ⁻ site
18	luep_a	Lowest unoccupied energy level of A ⁺ site
19	luep_b1	Lowest unoccupied energy level of B1+ site
20	luep_b2	Lowest unoccupied energy level of B ³⁺ site
21	luep_x	Lowest unoccupied energy level of X- site
22	rs_a	Radius of s-orbital of A ⁺ site
23	rs_b1	Radius of s-orbital of B1+ site
24	rs_b2	Radius of s-orbital of B ³⁺ site
25	rs_x	Radius of s-orbital of X- site
26	rp_a	Radius of p-orbital of A ⁺ site
27	rp_b1	Radius of p-orbital of B1+ site
28	rp_b2	Radius of p-orbital of B ³⁺ site
29	rp_x	Radius of p-orbital of X ⁻ site
30	rd_a	Radius of d-orbital of A ⁺ site
31	rd_b1	Radius of d-orbital of B1+ site
32	rd_b2	Radius of d-orbital of B ³⁺ site
33	rd_x	Radius of d-orbital of X ⁻ site

Supplementary Table 1: Descriptors of halide double perovskites¹. It includes 540 samples, 33 features and two property (heat of formation and band gap).

Methods		heat of f	ormation		Band gap				
witchious	R2	MAE	MSE	RMSE	R2	MAE	MSE	RMSE	
SVR	0.5874	0.1323	0.0243	0.1560	0.3983	0.5178	0.4292	0.6551	
DT	0.5988	0.1186	0.0237	0.1538	0.1121	0.5902	0.6334	0.7958	
RF	0.6738	0.1052	0.0192	0.1387	0.4373	0.4805	0.4014	0.6336	
RR	0.8793	0.0710	0.0071	0.0844	0.4713	0.4725	0.3772	0.6141	
XGBoost	0.6938	0.1017	0.0181	0.1344	0.3850	0.4927	0.4387	0.6624	
ANN	0.3585	0.1626	0.0378	0.1945	0.3387	0.5588	0.4718	0.6869	
SVR-K1	0.6482	0.1213	0.0208	0.1441	0.4124	0.5008	0.4192	0.6474	
DT-K1	0.6881	0.1059	0.0184	0.1357	0.2326	0.5446	0.5474	0.7399	
RF-K1	0.6808	0.1041	0.0188	0.1372	0.4443	0.4782	0.3964	0.6296	
RR-K1	0.8924	0.0654	0.0064	0.0797	0.5468	0.4546	0.3233	0.5686	
XGBoost-K1	0.7374	0.0900	0.0155	0.1245	0.4762	0.4521	0.3737	0.6113	
ANN-K1	0.8409	0.0804	0.0094	0.0969	0.6585	0.3909	0.2436	0.4936	
SVR-K2	0.6053	0.1288	0.0233	0.1526	0.4178	0.5107	0.4153	0.6444	
DT-K2	0.6268	0.1108	0.0220	0.1484	0.3142	0.5233	0.4892	0.6994	
RF-K2	0.6823	0.1020	0.0187	0.1369	0.4725	0.4631	0.3763	0.6134	
RR-K2	0.9556	0.0412	0.0026	0.0512	0.5990	0.4270	0.2861	0.5349	
XGBoost-K2	0.6725	0.1043	0.0193	0.1390	0.4241	0.4705	0.4108	0.6409	
ANN-K2	0.5110	0.1352	0.0289	0.1698	0.7101	0.3568	0.2068	0.4547	
SVR-K3	0.9118	0.0563	0.0052	0.0721	0.5163	0.4710	0.3450	0.5874	
DT-K3	0.8458	0.0727	0.0091	0.0954	0.3652	0.4883	0.4528	0.6729	
RF-K3	0.8860	0.0619	0.0067	0.0820	0.5185	0.4617	0.3435	0.5861	
RR-K3	0.9253	0.0544	0.0044	0.0664	0.4309	0.5025	0.4060	0.6371	
XGBoost-K3	0.8848	0.0615	0.0068	0.0824	0.4560	0.4786	0.3881	0.6229	
ANN-K3	0.9099	0.0595	0.0053	0.0729	0.5630	0.4447	0.3118	0.5583	
JointMPP	0.9358	0.0494	0.0038	0.0615	0.6265	0.4073	0.2664	0.5162	

Supplementary Table 2: Quantitative prediction results of data quality improvement methods on heat of formation and band gap, where K1 stands for "domain knowledge for sample enhancement", K2 represents "domain knowledge for feature selection", and K3 is "domain knowledge for feature extraction". (train:test = 2:8)

Methods -	_	Heat of f	ormation		Band gap			
	R2	MAE	MSE	RMSE	R2	MAE	MSE	RMSE
SVR	0.9692	0.0373	0.0021	0.0459	0.6389	0.3771	0.265	0.5148
DT	0.9835	0.0258	0.0011	0.0336	0.7634	0.2349	0.1737	0.4167
RF	0.9923	0.018	0.0005	0.0229	0.8945	0.1906	0.0774	0.2782
RR	0.9888	0.019	0.0008	0.0277	0.7017	0.3532	0.219	0.4679
XGBoost	0.9986	0.0075	0.0001	0.0099	0.9046	0.1732	0.07	0.2647
ANN	0.9535	0.046	0.0032	0.0564	0.7562	0.327	0.179	0.423
JointMPP	0.9876	0.0226	0.0008	0.0291	0.7672	0.3239	0.1708	0.4133

Supplementary Table 3: Prediction results of six classical machine learning methods¹ in massive training samples. It mainly includes Decision Trees (DT), Artificial Neural Network (ANN), Random Forest (RF), Ridge Regression (RR), Support Vector Regression (SVR) and XGBoost. (train: test = 8: 2)

	• (is the top those that		15 1110 0	••••••••••••••••••••••••••••••••••••••		
Methods	DT	ANN	RF	RR	SVR	XGBoost	Ours
Sample 1	0.5988	0.3585	0.6738	0.8793	0.5874	0.6938	0.9358
Sample 2	-2.5046	0.3451	0.5802	0.8398	0.4963	0.5266	0.8756
Sample 3	0.8256	0.5560	0.8060	0.8992	0.7290	0.6522	0.4322
Sample 4	0.5725	0.6754	0.6516	0.9683	0.8288	0.8023	0.8700
Sample 5	0.8539	0.4546	0.6853	0.6267	0.6072	0.4341	0.4721
Sample 6	0.1579	0.7890	0.7856	0.4677	0.7601	0.5191	0.7951
Sample 7	0.5489	0.8354	0.6994	0.4636	0.7299	0.1474	0.7242
Sample 8	-2.4395	0.1113	0.6500	0.5366	0.1297	0.2276	0.8818
Sample 9	0.6295	0.7860	0.6357	0.8956	0.7399	0.7335	0.8534
Sample 10	0.1894	0.7251	0.4910	0.8630	0.8252	0.4864	0.9113
Sample 1	0.1560	0.1538	0.1387	0.0844	0.1344	0.1945	0.0615
Sample 2	0.1408	0.3713	0.1285	0.0794	0.2509	0.1605	0.0700
Sample 3	0.1158	0.1904	0.0980	0.0706	0.1312	0.1482	0.1676
Sample 4	0.0935	0.1477	0.1333	0.0403	0.1004	0.1287	0.0815
Sample 5	0.1499	0.3567	0.2283	0.1462	0.1800	0.1767	0.1738
Sample 6	0.1048	0.3449	0.0991	0.1561	0.1484	0.0983	0.0969
Sample 7	0.2762	0.3869	0.2679	0.1752	0.2862	0.2935	0.1256
Sample 8	0.1964	0.3904	0.1245	0.1433	0.1850	0.1984	0.0724
Sample 9	0.1228	0.1465	0.1453	0.0778	0.1243	0.1114	0.0922
Sample 10	0.0949	0.2043	0.1619	0.0840	0.1626	0.1190	0.0676

Supplementary Table 4: Stability quantization result of seven different methods, and the evaluation metric is R^2 and RMSE. (R^2 is the top table and RMSE is the bottom table).

Number	Compound ABX	Compound AB1B2X
train sets	460	734
test sets	116	184
Positive sample	313	868
Negative sample	263	50
Element A	49	35
Element B	67	
Element B1		52
Element B2		48
Element X	5	5

Supplementary Table 5: Experimental data² for classifying perovskite materials.

Data Resources:

https://www.science.org/doi/10.1126/sciadv.aav0693#supplementary-materials.

Methods –		Perovsk	ite ABX		Perovskite ABBX			
	Acc	MP	MR	F1	Acc	MP	MR	F1
LR1	88.79	88.88	88.21	88.48	95.65	85.56	64.71	70.30
LR2	87.07	86.89	86.70	86.79	95.65	85.56	64.71	70.30
SVM	87.07	86.77	86.94	86.85	95.65	85.56	64.71	70.30
KNN	89.66	89.94	88.97	89.34	96.20	82.19	79.14	80.58
DT	90.52	90.67	89.97	90.26	96.74	86.36	79.43	82.48
RF	91.38	91.42	90.97	91.17	97.28	91.73	79.71	84.58
ANN	89.66	89.94	88.97	89.34	95.65	85.56	64.71	70.30
GBDT	91.38	92.73	90.24	90.99	96.20	84.30	74.43	78.41
ABC	88.79	88.65	88.45	88.55	96.20	88.32	69.71	75.68
JointMPP	86.21	86.09	85.70	85.87	95.65	85.56	64.71	70.30

Supplementary Table 6: Perovskite classification result of ten different methods. Where, "LR1" and "LR2" stand for Logistic Regression with a L1 penalty term and a L2 penalty term respectively. "SVM" is Support Vector Machines, "KNN" is K Nearest Neighbors algorithm, "DT" is Decision Trees, "RF" is Random Forests, "ANN" is Artificial Neural Network, "GBDT" is Gradient Boosted Decision Trees and "ABC" is Ada Boost. (train: test = 8: 2)

Supplementary Methods

In order to verify the improvement effect of domain knowledge fusion on training data quality, this paper proposes three kinds of data preprocessing methods guided by domain knowledge. It mainly includes:

(1)The Hadamard product of the correlation matrix (dimension is 90×33) of

features and properties in the material domain knowledge and the original training sample matrix (dimension is 90×33) is used to obtain the training sample based on the correlation (dimension is 90×33). And then the two training samples are combined to increase the number of training dataset (dimension is 180×33);

2) The sparse feature correlation (dimension is 28) is obtained by assigning the

feature correlation below a certain threshold in the domain knowledge as 0, and then the feature of the original training sample (dimension is 33) is screened by this correlation to get the key sample feature (dimension 28);

³By using the dot product of the hierarchical correlation matrix (dimension is

 33×9) and the original training sample matrix (dimension is 90×33), the domain knowledge can achieve the aggregate extraction of the original sample features, and the final training data dimension is 90×9 .

Supplementary References

- 1 Z.-t. Guo and B. Lin, *Solar Energy*, 2021, **228**, 689-699.
- 2 C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli and M. Scheffler, *Science Advances*, 2018, **5**.