Electronic Supporting Information

Constructing the Square-Like Copper Cluster to Boost C-C Coupling for CO2

Electroreduction to Ethylene

Tiantian Zhao,¹ Tingyu Yan,¹ Yuting Sun,¹ Zhongxu Wang, ¹ Qinghai Cai,¹ Jingxiang Zhao^{1,*} Zhongfang Chen^{2,*}

¹ College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China ² Department of Chemistry, University of Puerto Rice, Rice Rice Rice Commun. San Juan

² Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931, USA

* To whom correspondence should be addressed. Email: <u>*zhaojingxiang@hrbnu.edu.cn</u>*</u>

(J. Z.).; zhongfang.chen1@upr.edu (Z.C.)

COMPUTATIONAL DETAILS

The overpotential (η) for CO₂RR to C₂H₄ product can be obtained by the formula: $\eta = U_E - U_L$, where U_E is the equilibrium potential for C₂H₄ generation (0.06 V); U_L is the limiting potential (-0.32 V). Thus, η is 0.38 V.

The dissolution potential ($U_{diss} = U^{\circ}$ diss(bulk) – E_{f} /ne) is a good parameter to evaluate the electrochemical stability of metal doping, where U° diss(bulk), E_{f} , and n are the standard dissolution potential of bulk metal (0.34 V), the formation energy of the catalyst (0.76 V), and the number of electrons involved in the dissolution, respectively. In details, $U_{diss} = (0.34 \text{ V} - 0.76 \text{ eV}/2\text{e}) = -0.04 \text{ V}$.

Table S1. The computed limiting potential (U_L, V) for the CO₂-to-C₂H₄ conversion in different solvation states.

Solvation	$\mathbf{U}_{\mathbf{L}}$
Without solvation	-0.32
Implicit Solvation	-0.30
Explicit Solvation	-0.35
Implicit Solvation + Explicit Solvation	-0.35

Table S2. Computed free energy changes (ΔG , in eV) for all potential elementary steps involved in the CO₂ electroreduction (CO₂ER) on the Cu₅@MoS₂ catalyst. Favorable steps are highlighted in red.

Elementary step on Cu ₅ @MoS ₂	ΔG
$^{*} + \mathrm{CO}_{2} + \mathrm{H}^{+} \rightarrow ^{*}\mathrm{COOH}$	0.22
$^{*}COOH + H^{+} + e^{-} \rightarrow ^{*}CO + H_{2}O$	0.19
$^{*}CO + CO \rightarrow ^{*}C_{2}O_{2}$	-0.93
$^{*}C_{2}O_{2} + H^{+} + e^{-} \rightarrow ^{*}C_{2}O_{2}H$	0.32
$^{*}C_{2}O_{2} + H^{+} + e^{-} \rightarrow ^{*}COCHO$	0.48
$^{*}C_{2}O_{2}H + H^{+} + e^{-} \rightarrow ^{*}C_{2}O + H_{2}O$	-0.73
$^{*}C_{2}O_{2}H + H^{+} + e^{-} \rightarrow ^{*}COCHOH$	0.73
$^{*}C_{2}O_{2}H + H^{+} + e^{-} \rightarrow ^{*}COHCOH$	0.39
$^{*}C_{2}O_{2}H + H^{+} + e^{-} \rightarrow ^{*}CHOCOH$	0.67
$^{*}C_{2}O + H^{+} + e^{-} \rightarrow ^{*}CHCO$	0.10
$^{*}C_{2}O + H^{+} + e^{-} \rightarrow ^{*}C\text{-COH}$	1.23
$^{*}C_{2}O + H^{+} + e^{-} \rightarrow ^{*}C-CHO$	0.15
$^{*}CHCO + H^{+} + e^{-} \rightarrow ^{*}CHCHO$	-0.36
* CHCO + H ⁺ + e ⁻ \rightarrow * CHCOH	0.14
$^{*}CHCO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CO$	0.05
$^{*}CHCHO + H^{+} + e^{-} \rightarrow ^{*}CHCHOH$	0.22
$^{*}CHCHO + H^{+} + e^{-} \rightarrow ^{*}CHCH_{2}O$	0.36
$^{*}CHCHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CHO$	0.70
$^{*}CHCHOH + H^{+} + e^{-} \rightarrow ^{*}CHCH + H_{2}O$	-0.12
$^{*}CHCHOH + H^{+} + e^{-} \rightarrow ^{*}CHCH_{2}OH$	0.37
$^{*}CHCHOH + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CHOH$	0.13
$^{*}CHCH + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CH$	0.13
$^{*}CH_{2}CH + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CH_{2}$	-0.25
$^{*}CH_{2}CH_{2} \rightarrow CH_{2}CH_{2} + ^{*}$	0.22

1		
Reaction intermediates	Energy (E)	R ²
*	$E = -0.96U^2 - 1.03U - 364.96$	0.99
*CO	$E = -1.35U^2 - 1.11U - 380.62$	0.99
$^{*}C_{2}O_{2}$	$E = -1.08U^2 + 0.01U - 396.25$	0.99
$^{*}C_{2}O_{2}H$	$E = -0.91U^2 - 0.49U - 400.41$	0.99
$^{*}C_{2}O$	$E = -1.04U^2 - 0.88U - 390.14$	0.99
*CHCO	$E = -0.94U^2 - 0.50U - 393.55$	0.99
*CHCHO	$E = -1.00U^2 - 0.67U - 397.83$	0.99
*CHCHOH	$E = -0.92U^2 - 0.74U - 401.44$	0.99
*CHCH	$E = -0.97U^2 - 1.04U - 390.23$	0.99
*CH ₂ CH	$E = -1.20U^2 - 0.82U - 393.40$	0.99
$^{*}CH_{2}CH_{2}$	$E = -1.00U^2 - 1.14U - 397.88$	0.99

Table S3. The quadratic relation between the energy (E) of the reaction intermediates and their dependence on the applied electrochemical potential (U).

Fig. S1. The computed free energy profile for the CO_2ER to C_2H_4 production on Cu_5/MoS_2 catalyst by using the revised Perdew-Burke-Ernzerhof (rPBE) functional.

(a)

Fig. S2. (a) Optimized configurations of the planar and three-dimensional (3D) Cu_5 clusters. (b) Optimized configurations of the two Cu_5 clusters on different initial sites, along with their relative energies difference (ΔE).

Fig. S3. Variations of temperature and energy as a function of the time for AIMD simulations of a 4×4 supercell Cu₅@MoS₂ for 20 *ps* with a time step of 2 *fs*.

Fig. S4. Computed band structures of (a) the defective MoS_2 monolayer and (b) the $Cu_5@MoS_2$ catalyst. The Fermi level was set to zero in a dotted red line.

Fig. S5. Optimized $^{*}CO_{2}$ adsorption structures on the Cu₅@MoS₂ catalyst (a) without (b) with explicit solvent, (c) hybridization between C-2p/O-2p orbitals and Cu-3d orbitals.

Fig S6. The computed free energy diagram illustrating the reaction pathway from $*CO + CO_2$ to *CO + *CO on the Cu₅@MoS₂ surface, including the relevant reaction intermediates.

Fig. S7. The minimum-energy reaction paths for (a) $^{*}CHO + ^{*}CO$, and (b) $^{*}CHO + ^{*}CHO$ on the Cu₅@MoS₂ catalyst.

Fig. S8. The computed minimum energy path for CO_2RR to C_2H_4 , and the corresponding structures of various transition states (TSs).

Fig. S9. The solvent effect on the catalytic activity of the design Cu_5/MoS_2 catalyst.

Fig. S10. Computed limiting potentials (U_L) for CO_2ER to C_2H_4 on the $Cu_5@MoS_2$ surface at different pH values.

Fig. S11. (a) Two isolated CO species after full structural relaxation and (b) minimum-energy reaction paths for *CHO + *CO on $Cu_2@MoS_2$, $Cu_3@MoS_2$, $Cu_4@MoS_2$, and $Cu_6@MoS_2$ catalysts.