Supplementary Information

Dopant-Induced Changes of Local Structure for Adjusting the Hydration Ability of Proton-Conducting Lanthanum Scandates

Semyon A. Belyakov^{1,*}, Alyona S. Lesnichyova^{1,3}, Maksim S. Plekhanov², Nils Prinz², Mirijam Zobel², Alexander S. Vokhmintsev³, Ilya A. Weinstein^{3,4}

- ¹ Institute of High-Temperature Electrochemistry UB RAS, Yekaterinburg 620137, Russia
- ² Institute of Crystallography, RWTH Aachen University, Aachen 52066, Germany
- ³ NANOTECH Centre, Ural Federal University, Yekaterinburg, 620002, Russia
- ⁴ Institute of Metallurgy UB RAS, Yekaterinburg 620016, Russia
- * Corresponding author: bca2@mail.ru

Partial Conductivities

The total conductivity of $La_{0.95}M_{0.05}ScO_{3-\delta}$ (M = Ca, Sr, Ba) as a function of pO_2 in a dry $(pH_2O = 0.1 \text{ kPa})$ and wet $(pH_2O = 2.8 \text{ kPa})$ atmosphere was measured by the 4-probe DC method and is shown in Fig. S1. Under air conditions, the conductivity contains three contributions:

$$\sigma_t = \sigma_H + \sigma_O + \sigma_h, \qquad (1)$$

where σ_H , σ_O and σ_h are the proton, oxygen-ion and hole conductivities, respectively.

Fig. S1 Total conductivity vs. $pO_2^{1/4}$ dependencies for La_{0.95}M_{0.05}ScO_{3- δ} (M = Ca, Sr, Ba)

Frade¹ and Baek² proposed an approach for calculating partial conductivities based on slope analysis of $\sigma = f(pO_2)$ dependencies. This approach implies the independence of the mobility of charge carriers on the concentration of components of the gas phase. The following relations are obtained for partial conductivities:

$$\sigma_{H} = \sigma_{H}^{*} \left(\left(1 + \frac{\alpha}{pH_{2}O} \right)^{1/2} - 1 \right) \frac{pH_{2}O}{\left[(1 + \alpha)^{1/2} - 1 \right]},$$
(2)

$$\sigma_{O} = \sigma_{O}^{*} \left(\left(1 + \frac{\alpha}{pH_{2}O} \right)^{1/2} - 1 \right)^{2} \frac{pH_{2}O}{\alpha},$$
(3)

$$\sigma_{h} = \sigma_{h}^{*} \left(\left(1 + \frac{\alpha}{pH_{2}O} \right)^{1/2} - 1 \right) \left(\frac{pH_{2}O}{\alpha} \right)^{1/2} pO_{2}^{1/4},$$
(4)

where σ_{H}^{*} is protonic conductivity at $pH_2O = 1$ atm, σ_{O}^{*} is oxygen-ion conductivity at $pH_2O = 0$ atm and σ_{h}^{*} is hole conductivity at $pO_2 = 1$ atm and $pH_2O = 0$ atm. The value of α is equal to:

$$\alpha = \frac{8x_{eff}}{K_H},\tag{5}$$

where x_{eff} is the saturation limit for hydration or effective concentration of the dopant in the positions of La and K_H is the equilibrium constants of hydration.

Based on equation (7), we can find σ_h as the slope of the experimental dependence $\sigma_t = f((pO_2)^{1/4})$. The α value can be calculated by combining two equations (4) for two humidity values and obtaining the following equation:

$$\frac{\sigma_{h}^{(1)}}{\sigma_{h}^{(2)}} = \frac{\sigma_{h}^{*} \left(\left(1 + \frac{\alpha}{pH_{2}O^{(1)}}\right)^{1/2} - 1 \right) \left(\frac{pH_{2}O^{(1)}}{\alpha}\right)^{1/2}}{\sigma_{h}^{*} \left(\left(1 + \frac{\alpha}{pH_{2}O^{(2)}}\right)^{1/2} - 1 \right) \left(\frac{pH_{2}O^{(2)}}{\alpha}\right)^{1/2}} = \frac{\left(1 + \frac{pH_{2}O^{(1)}}{\alpha}\right)^{1/2} - \left(\frac{pH_{2}O^{(1)}}{\alpha}\right)^{1/2}}{\left(1 + \frac{pH_{2}O^{(2)}}{\alpha}\right)^{1/2} - \left(\frac{pH_{2}O^{(2)}}{\alpha}\right)^{1/2}}.$$
(6)

The resulting α values at different temperatures are shown in Table S1.

Table S1 The values of α calculated for $La_{0.95}M_{0.05}ScO_{3-\delta}$ (M = Ca, Sr, Ba) at different temperatures

T, ⁰C		$oldsymbol{lpha}$, atm	
	$La_{0.95}Ca_{0.05}ScO_{3-\delta}$	$La_{0.95}Sr_{0.05}ScO_{3-\delta}$	$La_{0.95}Ba_{0.05}ScO_{3\text{-}\delta}$
800	0.1286	0.4258	0.8934
700	0.0200	0.1605	0.3022
600	0.0091	0.0540	0.1011

Next, we can find σ_H and σ_O from the value of the total ionic conductivity (σ_i , the intercept with the vertical axis of $\sigma_t = f((pO_2)^{1/4}$ experimental dependency) by combining equations (2) and (3) for two humidity values:

$$\frac{\sigma_{i}^{(1)}}{\sigma_{i}^{(2)}} = \frac{\sigma_{H}^{(1)} + \sigma_{O}^{(1)}}{\sigma_{H}^{(2)} + \sigma_{O}^{(2)}} = \frac{\sigma_{H}^{*} \left(\left(1 + \frac{\alpha}{pH_{2}O^{(1)}}\right)^{1/2} - 1 \right) \left(\frac{pH_{2}O^{(1)}}{\left[\left(1 + \alpha\right)^{1/2} - 1\right]}\right)^{1/2} + \sigma_{O}^{*} \left(\left(1 + \frac{\alpha}{pH_{2}O^{(1)}}\right)^{1/2} - 1 \right)^{2} \frac{pH_{2}O^{(1)}}{\alpha} \cdot (7)$$

$$\frac{\sigma_{H}^{*} \left(\left(1 + \frac{\alpha}{pH_{2}O^{(2)}}\right)^{1/2} - 1 \right) \left(\frac{pH_{2}O^{(2)}}{\left[\left(1 + \alpha\right)^{1/2} - 1\right]}\right)^{1/2} + \sigma_{O}^{*} \left(\left(1 + \frac{\alpha}{pH_{2}O^{(2)}}\right)^{1/2} - 1 \right)^{2} \frac{pH_{2}O^{(2)}}{\alpha} \cdot (7)$$

XRD and PDF

Fig. S2 XRD patterns with Rietveld refinements for $La_{0.95}M_{0.05}ScO_{3-\delta}$ (M = Ca, Sr, Ba) samples in dry and saturated with water (wet) states

Fig. S3 Refined local structure using X-ray PDF for $La_{0.95}M_{0.05}ScO_{3-\delta}$ (M = Ca, Sr, Ba) samples in dry and saturated with water (wet) states

Interatomic distances were calculated for the indicated atoms (according to the type of atom) up to 10 Å. There are 4 A-type positions, 4 B-type positions, 8 O1-type positions and 4 O2-type positions in the original unit cell. Atoms are numbered in the following order: La 1-4, Sc 5-8, O1 9-16 and O2 17-20. Table S2 presents the interatomic distances for the first coordination spheres of atoms, which corresponds to the lengths of chemical bonds.

Pairs	Bond length, Å		
La-O	Ca	Sr	Ba
La(1)-O(18), La(2)-O(17), La(3)-O(20), La(4)-O(19)	2.3347	2.3238	2.4613
La(1)-O(13), La(1)-O(15), La(2)-O(14), La(2)-O(16), La(3)-O(9), La(3)-O(11), La(4)-O(10), La(4)-O(12)	2.4422	2.4118	2.4315
La(1)-O(19), La(2)-O(20), La(3)-O(17), La(4)-O(18)	2.4679	2.5087	2.4319
La(1)-O(10), La(1)-O(2, La(2)-O(9), La(2)-O(11), La(3)-O(14), La(3)-O(16), La(4)-O(13), La(4)-O(15)	2.6957	2.7185	2.7326
La(1)-O(9), La(1)-O(11), La(2)-O(10), La(2)-O(12), La(3)-O(13), La(3)-O(15), La(4)-O(14), La(4)-O(16)	2.9115	2.9048	2.8935
La(1)-O(19), La(2)-O(20), La(3)-O(17), La(4)-O(18)	3.3646	3.3324	3.3684
La(1)-O(14), La(1)-O(16), La(2)-O(13), La(2)-O(15), La(3)-O(10), La(3)-O(12), La(4)-O(9), La(4)-O(11)	3.5562	3.5829	3.5601
La(1)-O(18), La(2)-O(17), La(3)-O(20), La(4)-O(19)	3.5816	3.5798	3.4605
Sc-O			
Sc(5)-O(9), Sc(5)-O(13), Sc(6)-O(10), Sc(6)-O(14), Sc(7)-O(11), Sc(7)-O(15), Sc(8)-O(12), Sc(8)-O(16)	1.9605	1.977	1.9890
Sc(5)-O(17), Sc(5)-O(19), Sc(6)-O(18), Sc(6)-O(20), Sc(11)-O(17), Sc(11)-O(19), Sc(12)-O(18), Sc(12)-O(20)	2.1238	2.1178	2.1120
Sc(5)-O(12), Sc(5)-O(16), Sc(6)-O(11), Sc(6)-O(15), Sc(7)-O(10), Sc(7)-O(14), Sc(8)-O(9), Sc(8)-O(13)	2.2401	2.2396	2.2209

Table S2 Bond length according to PDF

References

- 1 J. R. Frade Solid State Ionics, 1995, **78**, 87–97. [DOI: 10.1016/0167-2738(95)00008-T]
- 2 H. D. Baek Solid State Ionics, 1998, **110**, 255–262. [DOI: 10.1016/S0167-2738(98)00138-6]