Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023 Supplementary Information ## Inserting a lithiation potential gap as a factor for degradation control in aluminum-foil anodes by utilizing roll-bonding processes Hongyi Li,^{1*} Shohei Nishimura,¹ Yuki Nakata,² Shingo Matsumoto,² Takitaro Yamaguchi,² Hiroaki Hoshikawa,³ Toshiaki Kumagai³ and Tetsu Ichitsubo^{1*} ¹ Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ² Advanced Materials Development Laboratory, Sumitomo Chemical Co., Ltd., Tsukuba 300-3294, Japan ³ Energy and Functional Materials Research Laboratory, Sumitomo Chemical Co., Ltd., Ehime 792-8521, Japan ^{*} Email: <u>li.hongyi@tohoku.ac.jp</u>; <u>tichi@tohoku.ac.jp</u> **Figure S1.** Structure degradation of Al-foil anodes with the absence of base layer. (a) Voltage profiles of a 50-µm-thick 99.99%Al foil during entire lithiation and delithiation. (b) A photo of the Al-foil anode in the cell after the experiment. Due to the lack of a base layer, the aluminum foil fractured into pieces. **Figure S2**. Structure of a three-electrodes batch cell (SB1A, EC-FRONTIER Co., Ltd.). The WE and CE has a have a diameter of 13 mm and are separated with a spacing of 5 mm without a separator. **Figure S3.** The fourth time of lithiation and relaxation in GITT measurements corresponds to Figure 4. The OCP potential of the Al-foil anodes increased quickly to a stable value. The difference between the OCP potentials and the theoretical electromotive force ~ 0.38 V would be caused by the increase of the strain energy in LiAl phase.