Supplementary Material

Computational Discovery of Diverse Functionalities in Two-Dimensional Square Disulfide Monolayers: Auxetic Behavior, High Curie Temperature Ferromagnets, Electrocatalysts, and Photocatalysts

Yu Liu¹, Wenlong Li¹, Fengyu Li^{1,*}, Zhongfang Chen^{2,*}

¹ School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China

² Department of Chemistry, The Institute for Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA

* Corresponding Authors: <u>fengyuli@imu.edu.cn (FL); zhongfang.chen1@upr.edu</u> (ZC)

where '*' indicates the cases where the optimized structures are not square. θ (°) S-XS₂ a = b (Å) **h** (Å) <u>r_{x-s}</u> (Å) (eV/atom) Ecoh S-HS₂ 2.98 79.82 1.94 2.29 2.50 ----------4.00 65.91 2.90 S-LiS₂ 2.60 2.38 2.57/2.86 3.92 102.16 2.52 2.74 $S-NaS_2$ 2.70 4.66 60.03 2.69 2.39 2.88 4.50 107.17 2.80 2.24 S-KS₂ 2.81 5.28 56.01 2.99 2.04 2.51/4.77 3.69 72.65 3.12 2.23 $S-RbS_2$ 2.94 5.54 55.97 3.13 1.83 --__ ----4.19 S-CsS₂ 5.00 100.12 1.22 3.26 2.60 5.37 2.02 36.05 3.26 S-BeS₂ 2.81 3.07 84.94 2.08 3.58 81.10 2.97 2.94 2.25 3.22 S-MgS₂ 3.05 3.78 77.67 2.43 2.84 90.19 3.14 3.64 2.57 2.80 3.32 S-CaS₂ 4.21 76.54 2.96 2.68 3.44 3.97 89.96 2.81 3.10 S-SrS₂ 2.84 3.59 4.39 78.52 2.69 42.79 2.95 3.91 4.76 2.15 $S-BaS_2$ 4.13 4.19 89.19 2.94 2.65 4.99 2.15 40.90 3.07 3.94 $S-BS_2$ 4.59 2.96 2.42 101.52 1.91 4.17/2.96 3.20 64.41 1.91/3.52 4.59 2.97 97.71 $S-AlS_2$ 3.40 2.26 3.94 3.45 2.76 69.41 3.74 2.43 S-GaS₂ 3.43 3.00 97.50 2.28 3.35 3.46 2.91 72.03 2.47 3.04 95.70 S-InS₂ 3.66 3.31 2.47 3.01 3.81 2.94 67.48 2.64 2.93 $S-TlS_2$ 3.76 3.40 95.72 2.54 2.50 3.91 3.04 67.94 2.72 2.36 $S-CS_2$ 2.97 2.30 104.53 1.88 4.03 --------S-SiS₂ 2.70 4.27 3.38 102.67 2.16 2.91 2.37 3.77 3.24 75.80 S-GeS₂ 3.51 2.85 101.90 2.26 3.68 3.38 3.07 76.38 2.48 3.24 101.77 S-SnS₂ 3.78 3.08 2.44 3.51 2.71 3.61 3.26 76.12 2.64 S-PbS₂ 3.94 101.77 2.54 3.05 3.20 3.76 3.36 75.47 2.87 2.75

Table S1. The structural parameters and cohesive energies of 68 S-XS₂ monolayers (the italics are the data of the corresponding hexagonal structure, and the bolds in E_{coh} are the values of square structure larger than the corresponding hexagonal structure),

$S-NS_2$	2.73	2.82	88.06	1.96	2.62
$*S-PS_2$	3.57/3.63	2.39	111.28	2.16	3.23
	3.16	3.12	81.06	2.40	2.94
S-AsS ₂	3.82	2.60	111.57	2.31	2.97
	3.33	3.33	81.66	2.54	2.80
S-SbS ₂	4.11	2.80	111.60	2.49	2.97
-	3.61	3.41	78.63	2.69	2.91
S-BiS ₂	4.20	3.04	108.26	2.59	2.83
~ 2122	3.77	3.50	77.53	2.79	2.81
*S-0S2					
S-SeS2	3 87	2 78	108 58	2 38	2 46
D-5C52	3.67	2.78	78 08	2.58	2.40
S ToS.	J.4J 1 27	5.20 2.45	121 50	2.50	2.40
5-1652	4.37	2.43	121.30	2.30	2.03
$\mathbf{C} \mathbf{D} \cdot \mathbf{C}$	3.71	2.29	/0./9	2.75	2.03
S-P0S ₂	4.12	3.29	102.85	2.64	2.68
	3.83	3.43	/3.60	2.80	2.78
$*S-FS_2$					
S-ClS ₂	4.50	1.03	154.17	2.31	1.49
S-BrS ₂	4.53	1.70	138.77	2.42	1.51
$S-IS_2$	4.68	1.98	134.05	2.54	1.74
	3.70	3.60	80.13	2.80	1.52
*S-HeS ₂	2.31/2.46	7.64	35.67	4.01	0.61
*S-NeS ₂	2.49/2.33	7.77	32.81	4.13	1.78
*S-ArS ₂	2.69/2.55	8.32	34.06	4.35	1.27
*S-KrS ₂	2.69/2.86	8.14	38.78	4.30	0.90
$*S-XeS_2$					
S-ScS2	3 68	3 22	97.62	2 44	4 44
5 5652	3 79	2 72	63 68	2.58	4 69
S-TiSa	3.68	2.72	107.15	2.30	5.00
5-1152	3.00	2.71	75 07	2.25	5.00
C VS.	3.55	2.64	107 72	2.45	J.10 A 52
\mathbf{S} - \mathbf{V} \mathbf{S}_2	3.33	2.04	107.72	2.21	4.55
C-C	5.17	2.97	/0.0/	2.50	4.02
$3-CrS_2$	3.30	2.48	109.38	2.13	5.78
	3.04	2.94	/9.82	2.29	4.17
S-MnS ₂	3.44	2.44	109.44	2.11	3.65
~	3.11	2.//	/5.3/	2.27	3.84
S-FeS ₂	3.46	2.33	112.15	2.08	3.89
	3.15	2.66	72.35	2.25	3.99
S-CoS ₂	3.52	2.23	115.29	2.08	3.86
	3.23	2.51	67.73	2.25	3.98
S-NiS ₂	267	2.05	121.57	2.10	3.71
- 2	5.07	2.05			
	3.55	2.03	54.42	2.30	3.93
S-CuS ₂	3.55 2.66	2.11 3.82	54.42 69.79	2.30 2.33	3.93 3.08
S-CuS ₂	3.55 2.66 3.72	2.03 2.11 3.82 2.14	54.42 69.79 52.95	2.30 2.33 2.40	3.93 3.08 3.13

S-YS ₂	3.94	3.44	98.55	2.60	4.44
	4.07	2.82	61.93	2.74	4.82
S-ZrS ₂	3.93	2.87	107.67	2.43	5.45
	3.58	3.15	74.59	2.60	5.57
$S-NbS_2$	3.72	2.81	105.87	2.33	5.39
	3.35	3.12	77.88	2.48	5.80
S-MoS ₂	3.71	2.61	109.73	2.27	4.51
	3.18	3.13	80.78	2.41	5.41
S-TcS ₂	3.58	2.65	106.98	2.23	4.65
	3.29	2.90	74.66	2.39	4.90
S-RuS ₂	3.63	2.51	110.63	2.21	4.57
	3.34	2.80	71.98	2.38	4.65
S-RhS ₂	3.67	2.46	112.27	2.21	4.08
	3.34	2.86	72.82	2.32	4.16
S-PdS ₂	2.70	4.16	65.91	2.48	3.03
	3.92	2.07	49.07	2.48	3.32
S-AgS ₂	2.71	4.53	61.73	2.64	2.53
	3.41	3.22	78.70	2.54	2.31
S-CdS ₂	3.09	4.06	74.60	2.55	2.09
	5.12/4.29	2.16	39.74	3.37/2.47	2.49
$S-HfS_2$	3.82	2.91	105.41	2.40	5.52
	3.54	3.13	74.93	2.57	5.66
S-TaS ₂	3.69	2.83	105.05	2.33	5.46
	3.34	3.13	78.04	2.48	5.91
S-WS ₂	3.53	2.88	101.51	2.28	5.20
	3.19	3.14	<i>80.93</i>	2.42	5.91
S-ReS ₂	3.63	2.61	108.63	2.24	4.76
	3.32	2.88	73.77	2.40	4.85
$S-OsS_2$	3.67	2.47	112.03	2.21	4.84
	3.38	2.77	70.88	3.39	5.01
S-IrS ₂	3.77	2.34	116.41	2.22	4.53
	3.36	2.88	72.83	2.32	4.43
S-PtS ₂	3.54	2.84	102.52	2.27	3.72
	3.48	2.79	69.64	2.45	3.75
S-AuS ₂	3.38	3.34	90.73	2.37	2.46
	4.70/3.41	3.23	46.72	4.08/4.07	2.86
*S-HgS ₂	4.05/2.71	3.91	61.11	2.67	1.68

two SiS ₂ structures obtained by the CALYPSO code are represented in italics.								
	C_{11}	C_{22}	C_{12}	C_{66}	Y_x	Y_y	v_x	v_y
S-BS ₂	102.62	102.62	27.83	20.47	95.08	95.08	0.271	0.271
$S-AlS_2$	47.97	47.97	2.91	4.77	47.79	47.79	0.061	0.061
S-GaS ₂	45.58	45.58	4.24	6.69	45.19	45.19	0.093	0.093
$S-InS_2$	33.21	33.21	3.47	2.70	32.85	32.85	0.104	0.104
$S-TlS_2$	24.02	24.02	2.93	3.34	23.85	23.85	0.121	0.121
$S-SiS_2$	96.37	96.37	-5.18	2.13	96.09	96.09	-0.054	-0.054
SiS_2-2	97.11	91.33	-2.76	7.04	81.41	76.57	-0.030	-0.028
SiS ₂ -3	115.12	115.12	24.97	45.07	109.70	109.70	0.217	0.217
S-GeS ₂	75.55	75.55	-4.73	1.72	75.26	75.26	-0.063	-0.063
$S-SnS_2$	51.39	51.39	-4.27	0.98	51.04	51.04	-0.083	-0.083
S-PbS ₂	39.49	39.49	-2.45	0.09	39.34	39.34	-0.062	-0.062
S-TiS ₂	31.38	31.38	0.51	5.05	31.37	31.37	0.016	0.016
S-VS ₂	28.55	28.55	3.38	7.49	28.15	28.15	0.118	0.118
S-CrS ₂	40.30	40.30	10.91	11.31	37.35	37.35	0.271	0.271
S-MnS ₂	42.33	42.33	10.85	10.85	39.55	39.55	0.256	0.256
S-FeS ₂	12.65	12.65	-7.20	6.52	8.55	8.55	-0.569	-0.569
$S-CoS_2$	20.67	20.67	11.32	3.69	14.47	14.47	0.548	0.548
S-ZrS ₂	29.70	29.70	0.44	1.78	29.69	29.69	0.015	0.015
$S-NbS_2$	22.19	22.19	15.42	7.03	11.48	11.48	0.695	0.695
S-MoS ₂	44.10	44.10	12.71	8.54	40.44	40.44	0.288	0.288
S-RuS ₂	39.25	39.25	15.13	2.45	33.41	33.41	0.385	0.385
$S-RhS_2$	13.98	13.98	-6.20	3.90	11.23	11.23	-0.443	-0.443
S-AgS ₂	145.48	145.48	-11.17	0.31	144.62	144.62	-0.077	-0.077
S-HfS ₂	37.67	37.67	3.75	1.57	37.30	37.30	0.100	0.100
S-TaS ₂	27.43	27.43	20.19	8.59	12.57	12.57	0.736	0.736
S-WS ₂	22.66	22.66	19.85	13.86	5.27	5.27	0.876	0.876
S-ReS ₂	29.96	29.96	11.82	9.71	25.30	25.30	0.395	0.395
S-OsS ₂	37.47	37.47	15.20	2.66	31.30	31.30	0.406	0.406
S-IrS ₂	34.27	34.27	6.90	3.57	32.88	32.88	0.201	0.201
			Mechanic	ally unstab	le			
S-BeS ₂	52.22	52.22	53.49	8.99				
$S-AsS_2$	-131.99	-131.99	189.29	2.51				
S-SbS ₂	-43.02	-43.02	82.43	1.36				
S-BiS ₂	8.07	8.07	25.83	0.63				
S-NiS ₂	-19.25	-19.25	-45.40	6.65				
S-CuS ₂	-29.58	-29.58	-3.50	4.63				
S-TcS ₂	15.42	15.42	15.83	9.42				
S-CdS ₂	-4.37	-4.37	53.28	4.26				
S-PtS ₂	-34.02	-34.02	-25.91	-3.46				
S-AuS ₂	22.16	22.16	12.80	-1.54				

Table S2. The elastic constants (in Nm^{-1}), Young's modulus (*Y*, in Nm^{-1}) and Poisson's ratio (*v*) of the 37 thermodynamically and dynamically stable *S*-XS₂ structures, including 27 mechanically stable monolayers and 10 mechanically unstable monolayers. Negative Poisson's ratios are indicated in bold within the data, while relevant data for two SiS₂ structures obtained by the CALYPSO code are represented in italics.

 $C_{11} = C_{22}$.

Young's moduli $Y_x = Y_y = (C_{11}C_{22} - C_{12}C_{21})/C_{11}$

Poisson's ratio $v_x = v_y = C_{12}/C_{11}$

number	E _{coh} (eV/atom)	space group	top-view	side-view
1	4.27	P-4m2		• •
2	4.26	C222		
3	4.24	<i>P</i> -3 <i>m</i> 1		
4	4.17	<i>C</i> 2		•

Table S3. Possible stable structures predicted by CALYPSO code arranged indescending order based on cohesive energy (E_{coh}) .

Table S4. Bader and Hirshfeld (in italic) charge analysis of S-XS₂ (X = Si, Ge, Sn, Pb, Ti, V, Cr, Mn, Zr, Mo, Re, Os) monolayers (in |e|).

S-XS ₂	Х	S	S-XS ₂	Х	S
S-SiS ₂	+2.31/+0.26	-1.15/-0.13	S-CrS ₂	+1.10/+0.28	-0.55/-0.14
S-GeS ₂	+1.24/+0.28	-0.62/-0.14	$S-MnS_2$	+0.94/+0.02	-0.47/-0.01
S-SnS ₂	+1.44/+0.41	-0.72/-0.20	S-ZrS ₂	+1.97/+0.38	-0.99/-0.19
S-PbS ₂	+1.04/+0.46	-0.52/-0.23	$S-MoS_2$	+1.14/+0.30	-0.57/-0.15
S-TiS ₂	+1.69/+0.28	-0.84/-0.14	S-ReS ₂	+0.91/+0.06	-0.46/-0.03
S-VS ₂	+1.43/+0.17	-0.72/-0.09	S-OsS ₂	+0.61/+0.04	-0.31/-0.02

Table S5. Relative energies of antiferromagnetic (AFM) and ferromagnetic (FM) states relative to non-magnetic (NM) state in a $2 \times 2 \times 1$ supercell of *S*-XS₂ (X = Re, Os, Si, Ge, Sn, Pb, Zr, Ti, Mo, V, Cr, and Mn) monolayers. Bold highlighting indicates monolayers with the lowest energies. The primary cell lattice constants (*a*) of the magnetic ground state of the *S*-XS₂ (X = Mo, V, Cr, and Mn) monolayers.

	$E_{AFM1} - E_{NM}$	$E_{AFM2} - E_{NM}$	$E_{FM} - E_{NM}$	a (Å)
	(eV)	(eV)	(eV)	
S-ReS ₂	0.00	0.00	0.00	
S-OsS ₂	0.00	0.00	0.00	
S-SiS ₂	0.00	0.00	0.00	
S-GeS ₂	0.00	0.00	0.00	
S-SnS ₂	0.00	0.00	0.00	
S-PbS ₂	0.00	0.00	0.00	
S-ZrS ₂	0.00	0.00	0.00	
S-TiS ₂	0.00	0.00	0.00	
$S-MoS_2$	-0.91	0.00	-0.04	7.41
S-VS ₂	-1.70	-1.54	-1.96	3.65
S-CrS ₂	-4.44	-3.61	-5.43	3.66
S-MnS ₂	-3.28	-2.88	-3.79	3.75

Table S6. ΔG_{H^*} values (in eV) for H adsorption at different sites on the same side of *S*-XS₂ (X = Re, Os, Cr, and Mn) monolayers. Certain initial sites transform to more stable geometries after relaxation. Values closest to zero are highlighted in bold.

S-XS ₂	S 1	S2	S3	S4	S5	S6	S 7	S8
S-ReS ₂	0.72	S 1	0.78	S5	0.17	S7	0.95	0.95
S-OsS ₂	0.81	S 1	0.93	S5	0.46	S 7	0.47	0.48
S-CrS ₂	0.15	S 1	S 1	S 8	S 8	S 8	S 8	-0.37
S-MnS ₂	-0.11	S 1	S 1	S 8	S 8	S 7	-0.12	-0.49

Table S7. ΔG_{H^*} values (in eV) for H adsorption at various sites on the antiferromagnetic (AFM1) *S*-MoS₂ monolayer. Certain initial sites transform to more stable geometries after relaxation. Values closest to zero are highlighted in bold.

$S-XS_2$	S1	S2	S3	S4	S5	S6
$S-MoS_2$	S 8	S 8	0.95	S5	0.36	S 8
S7	S 8	S9	S10	S11	S12	S13
S 8	0.23	S8	0.36	S10	0.95	S1

Table S8. ΔG_{H^*} values (in eV) of the *S*-XS₂ monolayers at various H coverage (θ) conditions. The data in brackets represent the ΔG_{H^*} values of the corresponding magnetic ground state after H adsorption.

H coverage (θ)	S-ReS ₂	S-OsS ₂	S-CrS ₂	S-MnS ₂	$S-MoS_2$
1/4	0.17	0.46	-0.37	-0.49	0.23 (0.37)
1/9	-0.06	0.03	-0.38	-0.50	
1/16	-0.18	-0.09	-0.41	-0.52	0.09 (0.32)

Fig. S1 Calculated phonon dispersion curves of the 37 dynamically stable S-XS₂ monolayers.

Fig. S2 Calculated phonon dispersion curves of 21 *S*-XS₂ monolayers with significant imaginary frequencies.

Fig. S3 Final structure and energy fluctuation of 12 thermally stable *S*-XS₂ monolayers upon 5 ps FPMD simulations at 300 K.

Fig. S4 Final structures of 15 thermally unstable *S*-XS₂ monolayers after 5 ps FPMD simulations at 300 K.

Fig. S5 (a) Phonon spectra and (b) band structures of SiS_2 -2 and SiS_2 -3.

Fig. S6 ELF maps of (010) slice for the square monolayer. ELF = 1 (red) and 0 (blue) indicate the accumulated and vanished electron densities, respectively. (a) *S*-SiS₂, (b) *S*-GeS₂, (c) *S*-SnS₂, (d) *S*-PbS₂, (e) *S*-TiS₂, (f) *S*-VS₂, (g) *S*-CrS₂, (h) *S*-MnS₂, (i) *S*-ZrS₂, (j) *S*-MoS₂, (k) *S*-ReS₂, and (l) *S*-OsS₂.

Fig. S7 Mechanical response of the S-XS₂ (X = Si, Ge, Sn, and Pb) monolayers under the uniaxial (ranging from -6% to 6%) strain along the *x*-direction.

Fig. S8 Schematic illustration of three different magnetic orders of *S*-XS₂ monolayer. (a) AFM1. (b) AFM2. (c) FM.

Fig. S9 Magnetism distribution of metal atoms in S-VS₂, S-MnS₂ and S-MoS₂ monolayers. The isosurface values were set as 0.02 e Å⁻³. (a) V atom in S-VS₂ (1.39 μ_B) monolayer. (b) Cr atom in S-VS₂ (2.91 μ_B) monolayer. (c) Mn atom in S-MnS₂ (3.28 μ_B) monolayer. (d) Mo atom in S-MoS₂ (±1.46 μ_B) monolayer.

Fig. S10 On-site magnetic moments of transition metal atoms as a function of temperature from MC simulations. (a) *S*-VS₂. (b) *S*-CrS₂. (c) *S*-MnS₂. (d) CrI₃.

Fig. S11 Partial charge distribution of VBM and CBM of S-XS₂ monolayers. (a) S-TiS₂.
(b) S-ZrS₂. (c) S-VS₂ (spin-up channel). (d) S-SiS₂. (e) S-GeS₂. (f) S-SnS₂. (g) S-PbS₂.
The isosurface values were set as 0.01 e Å⁻³.

Fig. S12 Fitting curves of deformation potentials of *S*-XS₂ (X = Si, Ge, Sn, Pb, Zr, Ti, and V (spin-up and spin-down)) monolayers. The strain ($\Delta x/x$) is ranging from -0.015 to 0.015 with the steps of 0.005.

Fig. S13 CBM and VBM energies of S-XS₂ (X = Si, Ge, Sn, Pb, Zr, and Ti) monolayers. Redox potentials of water splitting at (a) pH = 0 (purple dashed lines), (b) pH = 7 (orange dashed lines), and (c) pH = 14 (blue dashed lines).

Fig. S14 (a) Possible H adsorption sites on the nonmagnetic (NM) *S*-ReS₂, *S*-OsS₂ and ferromagnetic (FM) *S*-MnS₂ monolayers with a $2 \times 2 \times 1$ supercell. (b) Possible H adsorption sites on the antiferromagnetic (AFM1) *S*-MoS₂ monolayer, the red/blue arrow indicate the spin up/down magnetic configuration of Mo. Purple and dark/light yellow balls represent the X and S atoms of bottom/top layer, respectively.

(a) 1/4 H coverage

Fig. S15 Optimized structures of the energetically most favorable H adsorption sites on the S-XS₂ (X = Re, Os, Cr, Mo, and Mn) monolayer with H coverage of (a) 1/4, (b) 1/9 and (c) 1/16.