Supporting Information

Charge accumulation kinetics at a liquid-solid interface depend on liquid chemistry

Xin Liu^{1,2#}, Jinyang Zhang^{2,3 #}, Xuejiao Wang^{2,4#}, Shiquan Lin^{2,3}, and Zhong Lin Wang^{2,3,5,*}

- 1. College of engineering, Zhejiang Normal University, Zhejiang 321000, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P.R. China
- 5. Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

E-mail: zlwang@gatech.edu

Figure S1. Charge accumulation rates of 1M CaCl₂ contacting with FEP.

Figure S2. Relationship between solution concentrations and charge accumulation rates. (a and b) Charge accumulation rate curves for 1.5 M and 0.5 M CaCl₂ solutions. (c) Charge accumulation rates for different concentrations of CaCl₂ solutions.

Figure S3. Current curves and corresponding transferred charges of CaCl₂ **droplets of different concentrations at first droplet.** (a) Current curves for CaCl₂ droplets of different concentrations. (b) Transferred charges of CaCl₂ droplets of different concentrations.