Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Molten Salt- Directed Synthesis of Strontium Manganese Perovskite Oxide: An Active Electrocatalyst for Oxygen Reduction Reaction and Oxygen Evolution Reaction

Carolin Mercy Enoch,^a Sagar Ingavale,^a Phiralang Marbaniang,^a Indrajit Patil,^b and Anita Swami^{a*}

^a Department of Chemistry,^a SRM Institute of Science and Technology, Kattankulathur-603203,Chennai, India

^b Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra - 411008, India

*Corresponding author e-mail: swamianita@gmail.com

Figure S1. (a) XRD patterns of strontium manganese perovskite oxides; (b) Crystallite size calculated using Debye-Scherrer formula and microstrain plotted as a function of temperature.

Figure S2. EDS profiles of (a) SMO-700; (b) SMO-800; (c) SMO-900; and (d) SMO-1000.

Figure S3. (a) TEM image and (b) HRTEM image showing lattice fringes corresponding to (302), (104) of SMO-700 (SrMnO₃); (c) SAED pattern of SMO-700; (d) HRTEM image (corresponding TEM image and FFT in insets) of SMO-1000; whereas zoom images (I and II) show the lattice planes corresponding to (133) (132) and (200); and (e) SAED pattern of SMO-1000.

Figure S4. TEM image of SMO-1000.

Figure S5. Comparative CVs in N_2 and O_2 saturated 0.1 M KOH solution at scan rate 20 mV s⁻¹ of (a) SMO-700; (c) SMO-800; (e) SMO-1000; and corresponding ORR polarization curves at different rotation rates in O_2 saturated 0.1 M KOH for (b) SMO-700; (d) SMO-800; and (f) SMO-1000.

Figure S6. (a) Koutecky-Levich plots obtained at 0.5 V vs. RHE from figure 6 (a); (b) RRDE measurements of all the catalysts showing the percentage of peroxide and electron transfer number; (c) Chronoamperometric responses (current versus time) of SMO-1000 and Pt/C catalyst before and after addition of 1 M methanol recorded at fixed potential.

Figure S7. ORR polarization curves of (a) SMO-800; and (b) commercial Pt/C catalyst recorded initially and after 10k and 5k cycles respectively.

Figure S8. Cyclic voltammograms recorded in non-faradaic region for all the catalysts.

Figure S9. Current densities ($J = J_{anode}$ - $J_{cathode}$) as a function of scan rate for SMO-700, SMO-800, SMO-900 and SMO-1000 with the slope proporational to C_{dl} values.

Figure S10. (a) Crystal structures of 4-H SrMnO₃ stacking layers; (b-c) Crystal structures of SMO-900 Phase-I ($Sr_7Mn_4O_{15}$) and Phase-II ($SrMnO_3$); (d) Crystal structure of SMO-1000 showing zig-zag layers of Mn-O linkages; and (e) $Sr_4Mn_3O_{10}$ describing Mn_3O_{10} units. In all figures green ball represents strontium, blue ball represents manganese and red ball represents oxygen.

Figure S11. (a-c) Cyclic voltammograms recorded at different time intervals during the stability test (10k, 20k and 30k cycles) for SMO-1000 catalyst; and (d-f) corresponding current densities ($J=J_{anode}-J_{cathode}$) as a function of scan rate.

Figure S12. A proposed bi-functional mechanism for $Sr_4Mn_3O_{10}$ catalytic surface. The navy blue ball inside the polyhedra represents manganese, the brown ball represents oxygen, and the blue ball represents hydride.

Catalyst	Latti	ice param (Å)	eter	Crystal System	Space group & Space number	Rwp(%)	Rp(%)	Volume Fraction (%)
	а	b	с					
SMO- 700 SrMnO ₃	5.4484	5.4484	9.0865	Hexagonal	P 63/mmc &194	48.5	77.9	100
SMO- 800 SrMnO ₃ /Sr ₇ Mn ₄ O ₁₅	5.4484 6.8472	5.4484 9.6585	9.0865 10.2749	Hexagonal/ Monoclinic	P 63/mmc& 194 P1 21/c1 & 14	51.3	63.1	11.6 88.4
SMO- 900 SrMnO ₃ / Sr ₇ Mn ₄ O ₁₅	5.4507 6.8355	5.4507 9.6364	9.0900 10.3544	Hexagonal/ Monoclinic	P 63/mmc& 194 P1 21/c1 & 14	45.8	54.2	28.19 71.8
Sr ₄ Mn ₃ O ₁₀	5.4770	12.4625	12.5349	Orthorhombic	Cmca& 64	56.4	42.9	100

Table S1. Summary of refined cell parameters of SMO-700, SMO-800, SMO-900and SMO-1000.

R_{wp} Residual weight parameter, R_p Residual parameter

a)	No.	2 θ	hkl
	1	18.7798	100
	2	19.511	002
	3	21.1868	101
	4	27.2095	102
	5	32.8294	110
	6	35.1585	103
	7	38.0892	200
	8	38.4763	112
	9	39.4034	201
	10	39.6182	004
	11	43.1447	202
	12	44.1866	104
	13	48.8638	203
	14	51.1459	210
	15	52.1944	211
	16	52.3672	114
	17	53.9938	105
	18	55.2556	212
	19	56.1265	204
	20	58.6097	300
	21	59.5684	301
	22	60.123	213
	23	61.1055	006
	24	62.3905	302
	25	64.5349	106
	26	64.6491	205
	27	66.5687	214
	28	66.9419	303
	29	68.829	220
	30	71.1261	116
	31	72.0663	310
	32	72.3182	222

b)	Na	Code	2.0	b 1-1
	INO.	(Phases)	20	пкі
	1	1	25.2976	022
	2	2	25.3615	022
	3	1	26.0234	200
	4	2	26.0892	200
	5	2	30.7476	130
	6	2	30.7852	-202
	7	1	37.4481	-213
	8	2	37.5447	-213
	9	1	37.9551	104
	10	1	37.9906	-114
	11	2	45.185	204
	12	2	45.2044	015
	13	2	45.2499	034
	14	2	45.2806	-123
	15	1	46.4955	-115
	16	2	46.6179	-115
	17	1	47.1039	241
	18	1	47.151	-242
	19	2	48.0122	051
	20	1	48.0974	025
	21	1	51.5658	-332
	22	2	53.0497	332
	23	1	53.2956	-314
	24	2	53.4386	-314
	25	2	65.0798	226
	26	1	67.059	404

	No	Code	2.8	hbl
	110.	(Phases)	20	IIKI
	1	1	12.9335	100
	2	2	12.9658	100
	3	1	15.8649	110
	4	2	15.9046	110
	5	1	18.3727	111
	6	2	18.4188	111
	7	1	26.0356	200
	8	2	26.1015	200
	9	1	27.64	013
	10	1	30.0762	-113
	11	2 30.1528		-113
	12	2	32.1674	131
0)	13	1	34.1883	-123
	14	2	34.2759	-123
	15	1	36.1947	014
	16	2	36.2879	014
	17	1	38.0102	104
	18	2	38.0889	-114
	19	1	39.1045	-231
	20	2	39.2057	-231
	21	1	46.1633	214
	22	2	46.2847	214
	23	1	55.1092	304
	24	2	55.2579	304
	25	1	55.9407	-153
	26	2	56.0921	-153

d)	No.	20	hkl
	1	14.119	002
	2	14.202	020
	3	15.87	021
	4	19.048	111
	5	20.078	022
	6	25.649	023
	7	26.0356	200
	8	28.459	004
	9	28.628	040
	10	31.94	024
	11	32.055	042
	12	35.752	202
	13	35.787	220
	14	40.807	044
	15	55.259	206
	16	55.479	260
	17	58.893	008
	18	68.466	400
	19	70.316	402
	20	75.7457	404
	21	75.83	440

S16

			O spe		cies	
Composition (%)	Mn^{4+} Mn^{3+} $O_{surface}$		O _{surface}			
			O _{ad}	M-O	O _L	attice
SMO-900 (Sr ₇ Mn ₄ O ₁₅ / SrMnO ₃)	27%	73%	31.4%	32.4%	36.	2%
SMO-1000 (Sr ₄ Mn ₃ O ₁₀)	34%	66%	57.7% 19.1% 2		23.2%	

Table S3. Oxygen and manganese contents for SMO-900 ($Sr_7Mn_4O_{15}/SrMnO_3$) and SMO-1000 ($Sr_4Mn_3O_{10}$) obtained from XPS.

Table S4. Summary of electrochemical data (onset and half-wave potential, limiting current density and the number of electrons transferred) for all the synthesized catalysts.

Electrocatalyst	E _{onset} (V; vs. RHE)	E _{1/2} (V)	J _L @0.2 V (mA cm ⁻²)	<i>'n'</i> from RRDE
SMO-700 SrMnO ₃	0.96	0.82	3.57	3.7
SMO-800 SrMnO ₃ /Sr ₇ Mn ₄ O ₁₅	0.93	0.79	5.24	3.95
SMO-900 SrMnO ₃ /Sr ₇ Mn ₄ O ₁₅	0.97	0.82	5.56	3.98
SMO-1000 Sr ₄ Mn ₃ O ₁₀	0.91	0.78	5.34	4.0
Pt/C	0.99	0.9	5.85	4.0

Catalyst	Composition	01-01	O-Mn-O (°)	O-Mn-O (°)
		(Å)	Face sharing	Corner sharing
SMO-700	SrMnO ₃	2.7483	93.3831	171.47
SMO-800	Sr ₇ Mn ₄ O ₁₅	2.0371	93.5364	177.45
	SrMnO ₃	3.10359	73.3090	173.269
SMQ-900	Sr ₇ Mn ₄ O ₁₅	2.0493	93.5735	175.49
SMO-900	SrMnO ₃	3.10394	79.3681	173.184
SMO-1000	Sr ₄ Mn ₃ O ₁₀	2.77243	89.75	180

Table S5. O1-O1 bond distance in (Å) and O– Mn–O bond angles (°) as observed in SMO-700, SMO-800, SMO-900 and SMO-1000.

Catalyst	Composition	Mn-O(1) (Å)	Mn-O(2) (Å)	Mn-O(1)-Mn (Å)	Mn-O(2)-Mn (Å)	Mn-Mn (Å)
SMO-700	SrMnO ₃	1.8716	1.9013	2.73	1.8116	2.532
	Sr ₇ Mn ₄ O ₁₅	1.8965	2.06081	1.8764	1.7430	2.5328
SMO-800	SrMnO ₃	2.32566	2.31212	2.31212/ 79.54	2.31212	2.83262
	$Sr_7Mn_4O_{15}$	1.8025	2.06349	1.8974	1.7430	2.54318
SMO-900	SrMnO ₃	(Mn2)- (O3): 2.31650	(Mn2) - (O5): 2.31301	76.8491/ 2.31	32.3407/ 2.31650	2.86689
SMO-1000	$Sr_4Mn_3O_{10}$	1.925	2.024	1.92568	-	2.483

Table S6. Bond lengths of Mn-O (1) (Å) / Mn-O (2) (Å)/ Mn-O(1)-Mn(Å)/Mn-O(2)-Mn(Å)/Mn-Mn(Å)as observed in SMO-700, SMO-800, SMO-900 and SMO-1000.

Electrocatalyst	ECSA (m²/g))	Mass Activity (mA mg ⁻¹)	Specific Activity (mA cm ⁻²)
SMO-700 SrMnO ₃	1.33	9.7	0.73
SMO-800 SrMnO ₃ /Sr ₇ Mn ₄ O ₁₅	2.48	66.6	2.63
SMO-900 SrMnO ₃ /Sr ₇ Mn ₄ O ₁₅	1.92	126.8	6.61
SMO-1000 Sr ₄ Mn ₃ O ₁₀	1.2	41.5	3.46

Table S7. ECSA, mass activity and specific activity listed for all the synthesized catalysts.

 Table S8.
 Summary of the literature reports for ORR and OER performance.

Electrocatalyst	Catalyst loading (mg cm ⁻²)	E _{onset} (V; vs RHE)	Current density at 0.7 V	E _{1/2 (ORR)} (V; vs RHE)	E _{j-10 (OER)} (V; vs RHE)	E _{j-10(OER)} - E _{1/2(ORR)} (V; vs	Ref.
		,	(mA cm ⁻²)	,		RHE)	
SMO- 700 SrMnO ₃	0.566	0.96	2.16	0.82	-	-	This work
SMO-800 SrMnO ₃ /Sr ₇ Mn ₄ O ₁₅ (11.6% and 88.4%)	0.566	0.93	4.6	0.79	-	-	This work
SMO-900 SrMnO ₃ /Sr ₇ Mn ₄ O ₁₅ (36.9% & 66.06%)	0.566	0.97	5.16	0.82	1.93	1.11	This work
SMO- 1000 Sr ₄ Mn ₃ O ₁₀	0.566	0.91	4.35	0.78	1.72	0.94	This Work
LaMnO ₃	0.312	-	-	0.67	1.80	1.13	1
LaMn _{0.4} Co _{0.6} O ₃	0.312	-	-	0.71	1.63	0.92	1
LaMn _{0.2} Co _{0.8} O ₃	0.312	-	-	0.68	1.64	0.96	1
La _{0.4} Sr _{0.6} MnO ₃	0.5	-0.197 vs SCE (V)	4.54	-	0.774 @ 5 mA cm ⁻²	0.97	2
La _{0.8} Sr _{0.2} Mn _{1-x} Ni _x O ₃	NA	0.74	-	-	1.54 @ 2mA cm ⁻²	-	3
La _{23/} Sr _{1/3} MnO ₃	0.5	0.87	-	0.8	-	-	4
MnO ₂ /La _{0.7} Sr _{0.3} MnO ₃	0.47	0.87	-	0.75	1.727	0.89	5
$Sr_4Mn_3O_{10}$	NA	0.80	-	0.5	-	-	6
La _{0.9} Y _{0.1} MnO ₃	0.236	0.90	6.58	0.75	1.8	-	7
LKMnO ₃		-	-	0.78	1.66	-	8
La _{0.6} Ca _{0.4} CoO ₃ /Sb doped SnO ₂	NA	0.76	2.8	0.79	1.60	-	9
$\begin{array}{c} A_x Sm_{1-x} Mn_2 O_{5-\delta} (Ba_x Sn_{1-x} Mn_2 O_{5-\delta}) \end{array}$	0.25	0.884		0.789			10
La _{0.85} Y _{0.15} Ni _{0.7} Fe _{0.3} O ₃	0.2	0.71	3.7	0.62	1.63 @ 10 mA		11
La ₂ Co _{0.5} Fe _{0.5} MnO _{6-δ}	NA	0.78	6.1	0.62	1.65		12
LaCoO ₃ @ rGO	NA	0.85	5.5	0.70	1.51		13
La _{0.8} Sr _{0.2} Ti _{0.65} Fe _{0.35} O _{3- δ} LSTFO/NCNT	1.0	0.992	6.07	0.86	1.77	0.76	14

NA- Not Available

References

1. Jiang, X., Dong, Y., Zhang, Z., Li, J., Qian, J., & Gao, D.. Cation substitution of B-site in LaCoO₃ for bifunctional oxygen electrocatalytic activities. *Journal of Alloys and Compounds*, **2021**, 878, 160433.

2. Zhao, Y., Hang, Y., Zhang, Y., Wang, Z., Yao, Y., He, X., ... & Zhang, D.). Strontium-doped perovskite oxide $La_{1-x}Sr_xMnO_3$ (x= 0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O₂ batteries. *Electrochimica Acta*, **2017**, 232, 296-302.

3. Islam, M., Jeong, M. G., Oh, I. H., Nam, K. W., & Jung, H. G. (2020). Role of strontium as doping agent in LaMn_{0.5}Ni_{0.5}O₃ for oxygen electro-catalysis. *Journal of Industrial and Engineering Chemistry*, **2020**, 85, 94-101.

4. Eom, C. J., Kuo, D. Y., Adamo, C., Moon, E. J., May, S. J., Crumlin, E. J., & Suntivich, J. Tailoring manganese oxide with atomic precision to increase surface site availability for oxygen reduction catalysis. *Nature communications*, **2018**, 9(1), 1-7.

5. Yan, S., Xue, Y., Li, S., Shao, G., & Liu, Z. Enhanced bifunctional catalytic activity of manganese oxide/perovskite hierarchical core–shell materials by adjusting the interface for metal–air batteries. *ACS applied materials & interfaces*,**2019**, 11(29), 25870-25881.

6.González-Jiménez, I. N., Torres-Pardo, A., Rano, S., Laberty-Robert, C., Hernández-Garrido, J. C., López-Haro, M.,& Portehault, D. Multicationic $Sr_4Mn_3O_{10}$ mesostructures: molten salt synthesis, analytical electron microscopy study and reactivity. *Materials Horizons*, **2018**,5(3), 480-485.

7. Miao, H., Wang, Z., Wang, Q., Sun, S., Xue, Y., Wang, F., & Yuan, J. A new family of Mn-based perovskite (La_{1-x}Y_xMnO₃) with improved oxygen electrocatalytic activity for metal-air batteries. *Energy*, **2018**,154, 561-570.

8. Kotha, V., Karajagi, I., Ghosh, P. C., & Panchakarla, L. S. Potassium-Substituted LaMnO₃ as a Highly Active and Exceptionally Stable Electrocatalyst toward Bifunctional Oxygen Reduction and Oxygen Evolution Reactions. *ACS Applied Energy Materials*, **2022**

9. Fujiwara, Naoko, Tsukasa Nagai, Tsutomu Ioroi, Hajime Arai, and Zempachi Ogumi. "Bifunctional electrocatalysts of lanthanum-based perovskite oxide with Sb-doped SnO2 for oxygen reduction and evolution reactions." *Journal of Power Sources*, **2020**, 451,227736.

10. Zhao, Chunning, Meng Yu, Zhi Yang, Jieyu Liu, Shaohua Chen, Zhanglian Hong, Haijun Chen, and Weichao Wang. "Oxygen reduction reaction catalytic activity enhancement over mullite SmMn₂O₅ via interfacing with perovskite oxides." *Nano Energy*, **2018**, 51: 91-101.

11. Z. Lu, H. Zhou, B. Qian, S. Wang, Y. Zheng, L. Ge, H. Chen . Y and Fe co-doped LaNiO₃ perovskite as a novel bifunctional electrocatalyst for rechargeable zinc-air batteries." *International Journal of Hydrogen Energy*, **2023**, 48, no. 22, 8082-8092.

12. Li, T., Guo, W., & Shi, Q.. Nano-sized double perovskite oxide as bifunctional oxygen electrocatalysts. *International Journal of Electrochemical Science*, **2023**,*18*(5), 100103.

13. Ahmed, J., Ahamad, T., Alhokbany, N., Khan, M. M., Arunachalam, P., Amer, M. S., ... & Alshehri, S. M.. Reduced graphene oxide encapsulated perovskite-type lanthanum cobalt oxide nanoparticles for efficient electrolysis of water to oxygen reactions (OER/ORR). *Journal of Industrial and Engineering Chemistry*, **2023**,*121*, 100-106.

 L. Fengjiao, N. Mushtaq, T. Su, Y. Cui, J. Huang, M. Sun, M. Singh. "NCNT grafted perovskite oxide as an active bifunctional electrocatalyst for rechargeable zinc-air battery." *Materials Today Nano*. 2023, 21, 100287.