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Fig. S1 SEM images of a) P25, b) P25-600/2, c) P25-800/2 and d) P25-1000/2 

respectively.

Fig. S2 TEM images of a) P25, b) P25-600/2, c) P25-800/2 and d) P25-1000/2 

respectively.
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Fig. S3 High resolution TEM images of the catalyst.

Fig. S4 a) Deconvoluted O 1s XPS spectra and b) ESR spectra of P25 and P25-800/2 

respectively.

Fig. S5 a) UV-vis diffuse reflectance spectra of varied samples, and b) their bandgaps 

determined using [Ahγ]1/2 vs hγ plots.
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Fig. S6 Nitrogen adsorption-desorption isotherms and their corresponding pore size 

distribution curves of a) P25, b) P25-600/2, c) P25-700/2, d) P25-800/2, e) p25-900/2 

and f) P25-1000/2 respectively.

Fig. S7 a) Nitrogen adsorption-desorption isotherms and b) its corresponding pore 

size distribution curves of P25-800/2.
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Table S1. Ratios of anatase phase and rutile phase in varied samples based on XRD 

patterns.

Samples IA IR Ratio of A Ratio of R A/R ratio

P25-800/1 348.015 66.84 82.18% 17.82% 4.6

P25-800/2 384.265 117.01 74.42% 25.58% 2.9

P25-800/3 258.01 169.225 57.46% 42.54% 1.4

Table S2. Ratios of anatase phase and rutile phase in varied samples based on Raman 

spectra.

Samples m Ratio of A Ratio of R A/R ratio

P25-800/1 0.1284 83.03% 16.97% 4.9

P25-800/2 0.1868 74.91% 25.09% 3

P25-800/3 0.3289 57.04% 42.96% 1.3
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Fig. S8 Photo image of the high-pressure photocatalytic reactor.

Fig. S9 Products selectivity as a function of a) operating current of xenon lamp and b) 

illumination time.
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Fig. S10 Histograms of products yields during cycling tests.

Fig. S11 ESR spectra of P25-800/1, P25-800/2 and P25-800/3 respectively.

Fig. S12 Mott−Schottky plots of a) A-TiO2 and b) R-TiO2 at frequency of 1 kHz.



8

Fig. S13 a) UV-vis DRS spectrum of A-TiO2 and b) its bandgaps determined using 

the [Ahγ]1/2 vs hγ plot.

Fig. S14 PL spectra of P25 and P25-800/2.

Fig. S15 Mott−Schottky plots of P25 and P25-800/2.
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Fig. S16 Photocurrent curves of P25 and P25-800/2.

Fig. S17 EIS spectra of P25 and P25-800/2.

Fig. S18 Probable reaction routes and DFT energy profiles for the formation of varied 

C1 products on a) A-TiO2 (101) and b) R-TiO2 (110) planes.
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Fig. S19 Structures of the main intermediates during CH4 conversion to varied 

products on A-TiO2 (101) plane.

Fig. S20 Structures of the main intermediates during CH4 conversion to varied 

products on R-TiO2 (110) plane.
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Fig. S21 Calculated PDOS of a) A-TiO2 (101), b) R-TiO2 and c) A/R heterostructure 

respectively.

Table S3 Desorption energy of varied products.

Products CH3OH CH3OOH HCHO HCOOH

Desorption 

energy (eV)

1.235 0.624 0.2149 0.228

Adsorption 

configurations
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Part S1 Details of the instruments used for catalyst characterization

Morphologies and lattice fringe images of varied catalysts were measured on the S-

4800 scanning electron microscopy (SEM, Hitachi, Japan) and JEOL JEM-2100 

transmission electron microscopy (TEM, Japan). Crystal structures were characterized 

by a X-Ray Diffractometer (Japan). UV–vis diffuse reflectance spectra were obtained 

on a U-4100 UV-vis absorption spectrometer (Japan). Surface elemental chemical 

states were characterized by a ESCALAB 250Xi X ray photoelectron spectrometer 

(USA). Specific surface areas/pore sizes were measured on a Quantachrome autosorb-

iQ automatic specific surface and porosity analyzer (USA). All H nuclear magnetic 

resonance (HNMR) spectra were recorded on a JNM-ECZ400S NMR spectrometer 

(Japan). Electron spinning resonance (EPR) spectra were measured on a ESR 

spectrometer (EMX plus 10/12, Bruker, Germany). In-situ Fourier transform infrared 

(FTIR) spectra were recorded on the Vertex 80/Hyperion 2000 spectrometer (Bruker, 

Germany).

Part S2 DFT computational details.

All the density functional theory (DFT) calculations were carried out using the Dmol3 

code of Materials Studio 2019.1 The exchange-correlation potential was calculated by 

the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof 
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(PBE) functional.2 The interactions between electronics and ions were described using 

the DFT semi-core pseudo potentials (DSPPs) core treatment, which replaces core 

electrons by a single effective potential and introduces some degree of relativistic 

correction into the core.3 The geometry optimization convergences tolerance was set to 

5×10-4 Ha·Å-1 (1 Ha = 27.21 eV), and the total energy convergences was set to 10-6 Ha. 

The Brillouin zone were sampled with 1×1×1, 2×1×1 and 1×1×1 Monkhorst-Pack k-

point meshes for A-TiO2 (101), R-TiO2 (110) and A/R heterostructure model 

respectively, and a smearing of 0.005 Ha was applied to speed up electronic 

convergence. The Ti and O atoms in the bottom two layers were fixed, and the others 

atoms were fully relaxed. The thickness of the vacuum layer was set as 20 Å to avoid 

the unwanted interaction between the slab and its period images.

1 B. Delley. From molecules to solids with the DMol3 approach, The Journal of 

Chemical Physics., 2000, 113, 7756-7764.

2 J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made 

simple, Phys. Rev. Lett., 1996, 77, 3865.

3 B. Delley, Hardness conserving semilocal pseudopotentials, Phys. Rev. B., 2002, 66, 

155125.


