Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Lithophilic SiO₂ Nanoparticle Pillared MXene Nanosheets for Stable

and Dendrite-Free Lithium Metal Anodes

Shuaiqi Wang, Yaru Li, Xiaoze Zhou, Yi Yang, and Gang Chen*

School of Physical Science and Technology, ShanghaiTech University, Shanghai

201210, China

*E-mail: gchen@shanghaitech.edu.cn

Figure S1. (a) Low magnification and (b) High magnification SEM images of SiO_2 nanoparticles. The diameter of SiO_2 nanoparticles is about 200 nm.

Figure S2. XRD patterns of MAX phase (Ti_3AlC_2) and MXene $(Ti_3C_2T_x)$.

Figure S3. XPS characterization of MXene nanosheets. (a) F 1s, (b) O 1s, (c) Ti 2p, (d) C 1s.

Figure S4. SEM image of the surface of the MXene/SiO₂ composite film.

Figure S5. Cross-sectional SEM image of the $MXene/SiO_2$ composite film.

$$5 \operatorname{SiO}_{2} + 4 \operatorname{Li}^{+} + 4 \operatorname{e}^{-} \rightarrow 2 \operatorname{Li}_{2}\operatorname{Si}_{2}\operatorname{O}_{5} + \operatorname{Si} \dots (S6 \text{ a})$$

$$2 \operatorname{SiO}_{2} + 4 \operatorname{Li}^{+} + 4 \operatorname{e}^{-} \rightarrow \operatorname{Li}_{4}\operatorname{SiO}_{4} + \operatorname{Si} \dots (S6 \text{ b})$$

$$\operatorname{Si} + x \operatorname{Li}^{+} + x \operatorname{e}^{-} \rightarrow \operatorname{Li}_{x}\operatorname{Si} \dots (S6 \text{ c})$$

Figure S6. The electrochemical reactions of SiO_2 with Li.^{1,2}

Figure S7. (a) Low magnification and (b) High magnification SEM images of the surfaces of the $MXene/SiO_2$ electrode after 10 cycles.

Figure S8. The cross-sectional SEM images of the MXene/SiO₂ composite film (a) at the initial state and (b) after 50 cycles of Li plating/stripping with the areal capacity of 3 mAh cm⁻². The inset shows the zoomed-in cross-sectional SEM image.

Figure S9. Cross-sectional SEM image of the MXene/SiO₂ electrode after Li plating at the capacity of 3 mAh/cm².

Figure S10. Top-view and cross-sectional SEM images of the MXene/SiO₂ films taken for different Li deposition capacities of (a) 0.5 mAh cm^{-2} , (b) 1 mAh cm⁻², (c) 6 mAh cm⁻². Li is preferentially deposited inside the MXene/SiO₂ films when the areal capacity is small. At sufficiently large capacity, Li starts to deposit on the surface of the MXene/SiO₂ film.

Fig S11. EIS spectra of the Li-Cu half cell taken at 10th and 50th cycles. The inset shows the zoomedin view of the EIS spectrum recorded at 50th cycle.

Fig S12. The cycling performance of the symmetric cells with the areal capacity of 3 mAh cm⁻² at the current density of 3 mA cm⁻². The inset shows the zoomed-in profile from 490 to 510 h.

Fig S13. The cross-sectional SEM images of the MXene and MXene/SiO₂ films after cycling in the symmetric cells for 200 h with the areal capacity of 2 mAh cm⁻² at 2 mA cm⁻². (a) Low magnification and (b) High magnification cross-sectional SEM images of the MXene film. (c) Low magnification and (d) High magnification cross-sectional SEM images of the MXene/SiO₂ film

Figure S14. The charge–discharge profiles of the full cells with LFP as the cathode recorded at 1C. a) Li foil as the anode. b) The MXene/Li film as the anode.

Anode	Cathode	Current density	Voltage window	Cycling number	Capacity retention	Ref.
MXene/g-C ₃ N ₄	LFP	0.5C	4.0-2.2 V	320	85.5%	3
MXene film	LFP	1C	3.8-2.5 V	80	87.7%	4
MXene@CNF	LFP	0.2C	3.8-2.0 V	200	94%	5
Mxene aerogel	LFP	1C	4.1-2.2 V	500	70.4%	6
MXene@Au	LFP	1C	3.8-2.5 V	200	98.47%	7
MXene (Nb ₂ C)	NCM	0.25C	4.3V-3 V	100	78%	8
B-doped MXene	LFP	0.5 C	3-0.05 V	35	90%	9
MXene/Si/C	LNMO	1C	5.0-3.5 V	300	95.52%	10
MXene/SiO ₂ film	LFP	3C	4.0-2.5 V	350	≈100%	This work

 Table S1. The electrochemical performance of the MXene/SiO2 composite film is compared with most recent literatures about the MXene films.

Note: NCM: $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ and LNMO: $LiNi_{0.5}Mn_{1.5}O_4$

References:

- R. Pathak, K. Gurung, B.Bahrami, A.Wu, N. Ghimire, B. Zhou, W. Zhang, Y. Zhou, Q. Qiao, *Adv. Energy Mater.* 2019, 9, 1901486.
- [2] G. Lee, S. Kim, J. Choi, Adv. Funct. Mater. 2017, 27, 1703538.
- [3] F. Zhao, P. Zhai, Y. Wei, Z. Yang, Q. Chen, J. Zuo, X. Gu and Y. Gong, Adv. Sci., 2022, 9, 2103930-2103941.
- [4] C. Wei, H. Fei, Y. Tian, Y. An, H. Guo, J. Feng ,Y. Qian, Energy Storage Mater., 2020, 26,223-233.
- [5] C. Wang, Z. Zheng, Y. Feng, H. Ye, F. Cao, Z. Guo, Nano Energy, 2020, 74. 104817-104825.
- [6] X. Meng, Y. Sun, M. Yu, Z. Wang, J. Qiu, Small Science, 2021, 1. 2100021-2100030.
- [7] Y. Qian, C. Wei, Y. Tian, B. Xi, S. Xiong, J. Feng, Y. Qian, Chem. Eng. J., 2021, 421. 129685-129691.
- [8] W. Zhang, H. Jin, Y. Du, G. Chen, J. Zhang, Electrochimica Acta, 2021, 390. 138812-138817.
- [9] N. Wu, Q. Zhang, Y. Guo, L. Zhou, L. Zhang, M. Wu, W. Wang, Y. Yin, P. Sheng, S. Xin, Rare Metals, 2022, 41, 2217-2222.
- [10] Y. An, Y. Tian, Y. Zhang, C. Wei, L. Tan, C. Zhang, N. Cui, S. Xiong, J. Feng, Y. Qian, ACS Nano, 2020, 14, 17574-17588.