Supporting Information

Promotional effect on multiple active sites in Fe-based oxygen

reduction electrocatalysts for zinc-air battery

Zhiwen Li,^{‡1,3} Yan Xie,^{‡2} Jianxin Gao,^{‡2} Jia Zhang,¹ Xiaoke Zhang,² Yu Liu,² and Gao Li^{1,3*}

¹State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

²Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

³University of Chinese Academy of Sciences, Beijing 100049, China.

[‡]J. Zhang, Y. Xie, and J. Gao contributed equally.

*E-mail: gaoli@dicp.ac.cn (G. Li)

Scheme S1. The molecular structure of Hemin, which is a Fe-centered natural macrocyclic compound.

Fig. S1. TEM images of Hm/Cy@C-900.

Fig. S2. XPS spectra of Hm/TCA@C-900 sample: (a) N 1s, (b) S 2p, and (c) Fe 2p.

In view of the Fe 2p XPS spectra in Fig. S2c, the Fe^{2+} and Fe^{3+} species and metallic Fe^{0} particles were found, meaning the presence of metallic Fe, Fe_3C , FeN_x , FeS_x , or Fe_3O_4 species in the electrocatalysts.

Fig. S3. C 1s XPS spectra of (a) Hm/Cy@C-900 and (b) Hm/TCA@C-900 samples.

C 1s XPS was deconvoluted into four peaks, locating at 284.6, 285.7, 286.8, and 290.3 eV, matching with the C-C=C, C=N/C-O/C-S, C-N/C-O-C, and O-C=O species, respectively.^[1, 2] The prominent peak at 284.6 eV, attributed to sp²-hybridized C, suggests a high degree of graphitization.

Fig. S4.ORR polarization curves of Hm/Cy@C-T (T: 800, 850, 900 and 950 °C) at 5 mV s⁻¹ in O₂-saturated 0.1 M KOH solution. Thus, Hm/Cy@C-900 exhibited the best ORR activity, based on the value of $E_{1/2}$.

Fig. S5. CV curves in O₂- or N₂-saturated 0.1 M KOH solution of Hm/Cy@C-900 at 100 mV s⁻¹. The reduction peak observed at ~ 0.78 V (vs RHE) suggested that Hm/Cy@C-900 is effective in ORR.

Fig. S6. N₂ adsorption-desorption isotherms of Hm/Cy@C-900 and Hm/TCA@C-900 samples. The isotherm for Hm/TCA@C-900 was offset vertically by 100 cm³ g⁻¹.

Fig. S7. Raman spectra of Hm/Cy@C-900 and Hm/TCA@C-900 samples.

Two typical peaks at 1344 (D band) and 1596 cm⁻¹ (G band) stand for the disordered carbon (the defects) and sp²-hybridization carbon species (graphitization), respectively.^[3] The I_D/I_G value of Hm/Cy@C-900 (1.10) is higher than that of Hm/TCA@C-900 (1.07), demonstrating that Hm/Cy@C-900 has more defect carbon and disordered carbon matrix, which is conducive to ORR.^[4]

III. Supporting tables

Table S1	. The fitting parameters	of high-resolution	XPS N1s spectra	of Hm/Cy@C-900 a	and
Hm/TCA	@C-900 samples.				

Catalysts	Binding er	N relative to				
	Pyridinic N	Fe-N	Pyrrolic N	Graphitic N	C (at%)	
Hm/Cy@C-900	398.4	399.3	400.7	401.7	2.4	
	(37.3)	(18.1)	(34.1)	(10.5)		
Hm/TCA@C-900	398.5	399.4	400.8	401.5	1.0	
	(11.4)	(39.6)	(30.1)	(18.9)	1.9	

Table S2. The fitting parameters of high-resolution XPS S 2p spectra of Hm/Cy@C-900 and Hm/TCA@C-900 samples.

Catalysts	Binding energy of S species (eV) and content (%)				
	Fe-S	C-S-C	C-SOx-C		
Hm/Cy@C-900	163.8	164.8	167.5		
	(38.1)	(39.4)	(22.5)		
Hm/TCA@C-900	163.8	164.7	167.8		
	(40.4)	(32.6)	(27.0)		

Table S3. Fitting parameters of ⁵⁷Fe Mössbauer spectrum for Hm/Cy@C-900 catalyst.

Site	δ_{iso} (mms ⁻¹)	ΔE_Q	FWHM (mms ⁻¹)	Area (%)	Assignment
Doublet 1	0.29	0.74	0.58	8.55	Fe ^{III} N ₄ (five fold)
Doublet 2	0.40	2.81	0.58	7.18	Fe ^{III} N ₄ (six fold)
Sextet 1	0.19	0.00	0.38	53.51	Fe ₃ C
Sextet 2	0.77	-0.16	0.33	14.96	FeS _x
Sextet 3	0.10	-0.23	0.42	6.46	α-Fe
Sextet 4	0.42	-0.11	0.58	9.34	FeS _x

Site	$\delta_{iso}(mms^{-1})$	ΔE_Q	FWHM (mms ⁻¹)	Area (%)	Assignment
Doublet 1	0.28	-0.07	0.38	6.22	Fe ₃ O ₄ (+3.0)
Doublet 2	0.56	0.10	0.68	12.43	Fe ₃ O ₄ (+2.5)
Sextet 1	-0.02	0.01	0.31	18.84	α-Fe
Sextet 2	0.17	0.01	0.35	41.41	Fe ₃ C
Sextet 3	0.29	0.83	0.58	6.92	Fe ^{III} N ₄ (five fold)
Sextet 4	0.52	1.65	0.58	4.83	Fe ^{II} N ₄ (four fold)
Sextet 5	0.75	-0.26	0.58	9.35	FeS _x

Table S4. Fitting parameters of ⁵⁷Fe Mössbauer spectrum for Hm/TCA@C-900 catalyst.

Table S5. Comparison of the ORR performances of Hm/Cy@C-900 and presentative reported Febased NNMEs in a O₂-saturated 0.1 M KOH solution in recent five years.

Catalyst	Carbon source	$E_{onset}(V)$	$E_{1/2}(V)$	$J_L (mA cm^{-2})$	Ref.
Hm/Cy@C-900	carbon ECP	0.93	0.845	5.76	This work
Fe ₁ -HNC-500-850	glucose	0.93	0.842	5.80	[5]
Fe/N/S-PCNT	polypyrrole	0.96	0.840		[6]
Fe ₃ C@NCNTs	g-C ₃ N ₄	0.92	0.840	5.80	[7]
Fe-N-C/MXene	C_3N_4	0.92	0.840		[8]
Fe/OES	2-methylimidazole	1.00	0.850		[9]
Fe-SAC/NC	adenine	0.95	0.840		[10]
OM-NCNF-FeN _x	PAN, branched silica nanoaggregates	0.905	0.836	5.6	[11]
Fe/Mn-N-C	dopamine hydrochloride	1.02	0.880	5.7	[12]
Ni-N ₄ /GHSs/Fe-N ₄	graphene oxide	0.93	0.83		[13]
PtFeNC	2-methylimidazole	1.05	0.895	6.20	[14]

Reference

- [1] K. Li, J. Li, H. Yu, F. Lin, G. Feng, M. Jiang, D. Yuan, B. Yan, G. Chen, Sci. Total. Environ. 819 (2022)
 153115.
- [2] Y. Liu, Y. Xu, H. Wang, J. Zhang, H. Zhao, L. Chen, L. Xu, Y. Xie, J. Huang, Catalysts 12 (2022) 806.
- [3] F. Kong, X. Cui, Y. Huang, H. Yao, Y. Chen, H. Tian, G. Meng, C. Chen, Z. Chang, J. Shi, Angew. Chem. Int. Ed. 61 (2022) 202116290.
- [4] W. Li, L. Wu, X. Wu, C. Shi, Y. Li, L. Zhang, H. Mi, Q. Zhang, C. He, X. Ren, Appl. Catal. B-Environ. 303 (2022) 120849.
- [5] X. Zhang, S. Zhang, Y. Yang, L. Wang, Z. Mu, H. Zhu, X. Zhu, H. Xing, H. Xia, B. Huang, J. Li, S. Guo,
 E. Wang, Adv. Mater. 32 (2020) 1906905.
- [6] Z. Tan, H. Li, Q. Feng, L. Jiang, H. Pan, Z. Huang, Q. Zhou, H. Zhou, S. Ma, Y. Kuang, J. Mater. Chem. A 7 (2019) 1607.
- [7] C. Xu, C. Guo, J. Liu, B. Hu, J. Dai, M. Wang, R. Jin, Z. Luo, H. Li, C. Chen, Energy Storage Mater. 51 (2022) 149.
- [8] L. Jiang, J. Duan, J. Zhu, S. Chen, M. Antonietti, ACS Nano 14 (2020) 2436.
- [9] C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu, Y. Li, C. Li, R. Zou, J. Yu, Q. Xu, Angew. Chem. Int. Ed. 59 (2020) 7384.
- [10] J. Hu, D. Wu, C. Zhu, C. Hao, C. Xin, J. Zhang, J. Guo, N. Li, G. Zhang, Y. Shi, Nano Energy 72 (2020) 104670.
- [11] C. Cheng, S. Li, Y. Xia, L. Ma, C. Nie, C. Roth, A. Thomas, R. Haag, Adv. Mater. 30 (2018) 1802669.
- [12] Z. Chen, X. Liao, C. Sun, K. Zhao, D. Ye, J. Li, G. Wu, J. Fang, H. Zhao, J. Zhang, Appl. Catal. B-Environ. 288 (2021) 120021.
- [13] J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu, T. Ma, Adv. Mater. 32 (2020) 2003134.
- [14] X. Zhong, S. Ye, J. Tang, Y. Zhu, D. Wu, M. Gu, H. Pan, B. Xu, Appl. Catal. B-Environ. 286 (2021) 119891.