Supporting information

Flexible composite phase change materials with enhanced thermal

conductivity and mechanical performance for thermal management

Shuang-Zhu Li^a, Yi-Cun Zhou^a, Lu-Ning Wang^a, Shuai-Peng Wang^a, Lu Bai^a, Chang-Ping Feng^b, Rui-Ying Bao^a, Jie Yang^{a,*}, Ming-Bo Yang^a, Wei Yang^{a,*}

^aCollege of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan, 610065 P. R. China

^bShandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, Shandong, 266520 P. R. China

^{*} Corresponding authors.

Tel.: + 86 28 8546 0130; fax: + 86 28 8546 0130.

Email addresses: psejieyang@scu.edu.cn (J. Yang); weiyang@scu.edu.cn (W. Yang)

Fig. S1 SEM images of B40@M (a) with and (b) without adhesive polymers.

Fig. S2 SEM images of large amounts of (a) MCPW, (B)B20@M, and (c) B40@M.

Fig. S3 Cross-sectional SEM images of (a) NM60, (b) NM70, and (c) NM80.

Fig. S4 Typical stress-strain curves of NR, NM60, NM70, and NM80.

Fig. S5 Tensile fracture-surface SEM images of (a) NM70, (B)NB20/M, and (c) NB20@M.

Fig. S6 Cross-sectional SEM images and corresponding mapping images of (a-c) NB20@M and (d-i) NB20/M.

Fig. S7 Self-adhesive properties of flexible PCMs. (a) Strong self-adhesive demonstration of NB20@M: Two splines were bonded together by self-adhesion with an adhesion area of 15×10 mm². (b) Digital photos of a self-adhesive spline before and after the tensile fracture. (c) Stress-strain curves of original and self-adhesive NB20@M samples.

Fig. S8 Digital photos of NB20@M using as the phase change tape.

Fig. S9 (a) Digital and infrared images showing the underwater stretchability of NB20@M at 80 °C. (b) Typical stress-strain curves and (c) statistical elongational at break and tensile strength of NB20@M after the immersion and stretching in 80 °C for 24 h.

Fig. S10 Temperature evolution curves of NM70, NB20/M, and NB20@M during heating on a 50 °C hot stage and cooling on a 0 °C iron block.

Fig. S11 Infrared images of the battery with/without NB20@M during the discharging.

Samples	Thermal conductivity	Elongation at break	References
	$(W m^{-1} K^{-1})$	(%)	
OBC/PW/EG	4.2	5.4	2020 ^{S1}
PU/CNT	0.5	6	2020 ⁸²
POE-SEBS/PW/BN	0.32	44	2021 ^{S3}
POE/PW/GNP	0.73	18.75	2021 ⁸⁴
TPE/PW/EG	2.2	20	2021 ⁸⁵
EVA/EG/PA	1.7	3.68	2021 ⁸⁶
SBS/PW/CNT	0.39	20.33	2022 ⁸⁷
SEPS/n-	0.42	101	202258
Docosane/MWCNT/BN	0.43	101	202258
SEBS/PA/BN/Ag@HGMs	1.54	160	2022 ⁸⁹
BN@Fe ₃ O ₄ /PEG/PAA	1.07	10.4	2022 ^{S10}
PEG/PVA/CNTs	0.065	262	2022 ^{S11}
NB20@M	0.585	233	This work

 Table S1 Comparison of key properties between NB20@M in this work and previously reported

 flexible organic PCMs.

Table S2 DSC heating and cooling characteristics of MCPW and composite PCMs.

Samples*	T_c (°C)	$\Delta H_c (\mathrm{J g}^{-1})$	T_m (°C)	ΔH_m (J g ⁻¹)
MCPW	11.9	192.2	30.1	193.4
NM70	8.2	128.4	33.4	129.5
NB20/M	9.3	82.6	32.2	85.3
NB20@M	8.9	83.7	32.4	86.5

* T_c , ΔH_c , T_m , and ΔH_m represent crystallization temperature, crystallization enthalpy, melting temperature, and melting enthalpy, respectively.

References

- S. Wu, T. Li, M. Wu, J. Xu, Y. Hu, J. Chao, T. Yan and R. Wang, *J. Mater. Chem. A*, 2020, 8, 20011-20020.
- S2. J. Shi, W. Aftab, Z. Liang, K. Yuan, M. Maqbool, H. Jiang, F. Xiong, M. Qin, S. Gao and R. Zou, J. Mater. Chem. A, 2020, 8, 20133-20140.
- S3. L.-Y. Yang, C.-P. Feng, L. Bai, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang and W. Yang, *Chem. Eng. J.*, 2021, **425**, 131466.
- S4. F. Wei, C.-P. Feng, J. Yang, L.-Y. Yang, L. Bai, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang and W. Yang, ACS Appl. Mater. Interfaces, 2021, 13, 59364-59372.
- S5. Z. Cai, J. Liu, Y. Zhou, L. Dai, H. Wang, C. Liao, X. Zou, Y. Chen and Y. Xu, Sol. Energy Mater. Sol. Cells, 2021, 219, 110728.
- S. Li, X. Dong, X. Lin, D. Shao, G. Zhang, J. Deng and X. Yang, *J. Energy Storage*, 2021, 44, 103447.
- S7. D. Hu, L. Han, W. Zhou, P. Li, Y. Huang, Z. Yang and X. Jia, *Chem. Eng. J.*, 2022, 437, 135056.
- Y. Ma, H. Wang, L. Zhang, X. Sheng and Y. Chen, *Compos. Part A Appl. Sci. Manuf.*, 2022, 163, 107203.
- H. Zhang, S. Zhang, C. Li, Z. Shi, Q. Yang, S. Wang and C. Xiong, *J. Energy Storage*, 2022, 52, 104836.
- S10. H. Cao, Y. Li, W. Xu, J. Yang, Z. Liu, L. Bai, W. Yang and M. Yang, ACS Appl. Mater. Interfaces, 2022, 14, 52411-52421.
- S11. J. Wu, M. Wang, L. Dong, C. Zhu, J. Shi and H. Morikawa, ACS Sustainable Chem. Eng., 2022, 10, 7873-7882.