Kinetics-Mediated Assembly Assisted Precise Synthesis of Magnetic

Ordered Mesoporous Carbon Nanospheres for Ultra-Efficient

Electromagnetic Wave Absorption

Mengmeng Wei,^{a, b} Kai Liu,^c Qingyan Li,^a Hongwei Zhang,^a Guoxian Zhang,^a Qiuyu Zhang ^{*a, b} and Baoliang Zhang ^{*a, d}

^a School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.

^b Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China.

^c School of Materials Science and Engineering, Peking University, Beijing 100871, China.

^d Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an, 710072, China.

Figure S1. High-resolution TEM images Ni/OMCN-D (a) and Ni/OMCN-S (b).

^{*} Corresponding author, Northwestern Polytechnical University, Youyi Road 127#, Xi'an (710072), China. Email: qyzhang@nwpu.edu.cn; blzhang@nwpu.edu.cn

Figure S4.TGA curves of Ni/OMCN-D and Ni/OMCN-S under air atmosphere.

Figure S5. Room-temperature hysteresis loops of Ni/OMCN-D and Ni/OMCN-S.

Figure S6. C₀-f curves of Ni/OMCN-D and Ni/OMCN-S.

Figure S7. Attenuation constant of the samples.

Figure S8. The frequency-dependent RL, $|Z_{in}/Z_0|$ and α values of the Ni/OMCN-D composite at the 2.0 mm thickness.

Ni/OMCN-D was taken as an example to reveal the intrinsic relationships between impedance matching, dissipation capability and EMWA performance. The EMWA properties of Ni/OMCN-D at 2.0 mm were analyzed by examining the variation in RL, $|Z_{in}/Z_0|$ and α as a function of frequency (Figure S8). When the frequency was 18 GHz, α reach the maximum value of 239, while the corresponding RL intensity decreased to the lowest level due to poor impedance matching revealed by $|Z_{in}/Z_0|$. The $|Z_{in}/Z_0|$ value of Ni/OMCN-D was nearest to 1 at 12.0 and 14.3 GHz. Interestingly, Ni/OMCN-D showed an extremely high RL value of -72.2 dB at 14.3 GHz, whereas RL intensify at 12.0 GHz was comparatively low because of the inferior dissipation ability verified by the lower α . From the above result, it was good impedance matching and sufficient dissipation capability that synergistically determine excellent EMWA properties.

 Table S1. Physicochemical properties of the samples.

Sample	$S_{BET} (m^2 g^{-1})$	$V_{total} (cm^3 g^{-1})$	D _{pore} (nm)	$I_{\rm D}/I_{\rm G}$	N content (wt%)
OMCN-D	313	0.21	8.9	0.98	3.2
OMCN-S	309	0.32	9.6	0.98	2.9
Ni/OMCN-D	395	0.43	9.7	1.0	2.5
Ni/OMCN-S	400	0.46	10.3	1.0	2.3

Sample	Filler loading (wt %)	RL_{max} (dB)	Thickness (mm)	EAB (GHz)	Ref.
NC@NCNTs	30	-41.5	1.5	5.2	1
HBN-Co/C	-	-42.3	1.7	5.1	2
HPCMCs	30	-60.7	3.2	3.9	3
NHCS@NiO/Ni	12	-44.0	1.7	4.38	4
Ni-SA/HPCF	10	-53.2	3.5	5.0	5
NiFe@C@GO	30	-51.0	2.8	3.97	6
GMFs	10	-42.9	4.0	5.59	7
Co/C	40	-35.3	2.5	5.8	8
BLCNs	20	-45.3	1.5	4.2	9
NC	9	-24.0	1.6	6.0	10
MCHS	20	-50.9	3.2	5.4	11
Fe ₃ C@C	20	-57.6	3.95	5.0	12
Ni/OMCN-D	25	-72.2	2.0	5.6	Herein
Ni/OMCN-S	25	-47.1	1.9	6.2	Herein

Table S2. EMWA performance of the relative absorbers.¹⁻¹²

References

- D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang, L. Cui, H. Zhao and X. Han, J. Mater. Chem. A, 2021, 9, 5086-5096.
- 2 J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao and J. Kong, *Chem. Mat.*, 2021, 33, 1789-1798.
- 3 H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu, K. Lin, P. Xu, X. Han and Y. Du, *Small*, 2020, 16, 2003407.
- 4 B. Li, Z. Ma, X. Zhang, J. Xu, Y. Chen, X. Zhang and C. Zhu, Small, 2023, 19, 2207197.
- 5 X. Zhang, B. Li, J. Xu, X. Zhang, Y. Shi, C. Zhu, X. Zhang and Y. Chen, *Adv. Funct. Mater.*, 2023, **33**, 2210456.
- 6 Z. Yang, H. Lv and R. Wu, Nano Res., 2016, 9, 3671-3682.
- 7 C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen and C. Gao, *Nano-Micro Lett.*, 2017, 10, 26.
- 8 Y. Lü, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang and L. Zheng, Acs Appl. Mater. Interfaces, 2015, 7, 13604-13611.
- 9 J. Fu, W. Yang, L. Hou, Z. Chen, T. Qiu, H. Yang and Y. Li, *Ind. Eng. Chem. Res.*, 2017, 56, 11460-11466.
- H. Zhao, Y. Cheng, H. Lv, B. Zhang, G. Ji and Y. Du, Acs Sustain. Chem. Eng., 2018, 6, 15850-15857.
- 11 Y. Cheng, Z. Li, Y. Li, S. Dai, G. Ji, H. Zhao, J. Cao and Y. Du, *Carbon*, 2018, 127, 643-652.
- 12 Z. Lou, Y. Li, H. Han, H. Ma, L. Wang, J. Cai, L. Yang, C. Yuan and J. Zou, Acs Sustain. Chem. Eng., 2018, 6, 15598-15607.