A novel solid-state synthesis route for the high voltage Na₃V₂(PO₄)₂F_{3-2y}O_{2y}

cathode materials for Na-ion batteries

Supplementary information

Mainul Akhtar,^{a,b} Hafssa Arraghraghi,^{a,b} Sylvia Kunz,^{a,b} Qingsong Wang,^{a,b} and Matteo

Bianchini a,b, *

^a Department of Chemistry, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth Germany

^b Bavarian Center for Battery Technology (BayBatt), Universität Bayreuth, Weiherstrasse 26

95448 Bayreuth Germany

*E-Mail: <u>matteo.bianchini@uni-bayreuth.de</u>

Pages: S1-S14

Material	ICSD code
NaF	262837
VOPO4	9413
VPO ₄	36521
Na ₂ CO ₃	12168
(VO)2P2O7	88661
NVPF	194603
NVPF ₂ O	Own data – XRD refinement
NVPFO ₂	194604

Table S1: ICSD entries for the structures used for DFT calculations.

Figure S1 Crystal structures of NVPF_{3-2y}O_{2y} used for DFT calculations: (left) NVPF, (middle) NVPF₂O, (right) NVPFO₂. The structures are seen in the a-b crystallographic plane (c axis pointing out of the paper). The spheres yellow, purple, light red, dark red and blue represent Na, P, O, V and F, respectively.

NVPF						
S.G.: Am	am; Z = 4					$R_{Bragg} = 4.82\%$
<i>a</i> = 9.035	57(1) Å; $b = 9.0475(1)$ Å;	c = 10.74322(8) Å:	; $V = 878.27(1) \text{ Å}^3$	³ ; V/Z = 219.568(4	4) Å ³	$R_{wp} = 12.8\%$
						$\chi^2 = 14.0$
		8	atomic position			
atoms	Wyckoff position	x/a	y/b	z/c	occ	B_{iso}
V	8 g	0.25	0.2534(3)	0.18536(9)	1	0.80(1)
Р	8 e	0.00	0.000	0.2453(4)	1	0.84(3)
01	16 h	0.0973(6)	0.0954(7)	0.1601(4)	1	1.19(2)
O2	16 h	0.0916(6)	0.4015(7)	0.1681(4)	1	0.7(1)
F1	4 c	0.025	0.248(1)	0.000	1	0.48(7)
F2	8 g	0.025	0.7571(8)	0.1343(2)	1	1.92(7)
Na1	4 c	0.075	0.019(1)	0.0000	1	4.8(3)
Na2	8 f	0.5330(8)	0.2851(6)	0.0000	0.72(1)	1.8(2)
Na3	8 f	0.864(1)	0.412(1)	0.0000	0.31(1)	3.3(5)

Table S2: Structural parameters obtained from Rietveld refinement of NVPF.

			NVPF ₂ O			
S.G.: P42	$mnm; \mathbf{Z} = 4$				R_{I}	$B_{Bragg} = 5.79\%$
a = b = 9	9.04091(6) Å; <i>c</i> = 10.669	9(1) Å; $V = 872.13($	1) Å ³ ; $V/Z = 218.0$	34(3)Å ³		$R_{wp} = 13.3\%$
						$\chi^2 = 39.4$
		ê	atomic position			
atoms	Wyckoff position	x/a	y/b	z/c	occ	B_{iso}
V	<mark>8</mark> j	0.2487(3)	0.2487(3)	0.1922(1)	1	0.99(2)
P1	4 d	0	0.5	0.25	1	1.3(2)
P2	4 e	0	0	0.2563(6)	1	0.6(1)
01	16 k	0.0954(7)	0.4069(7)	0.1637(6)	1	0.8(2)
O2	<mark>8 j</mark>	0.0948(7)	0.0948(7)	0.156(1)	1	1.0(3)
O3	<mark>8</mark> j	0.4004(7)	0.4004(7)	0.170(1)	1	1.0(3)
O4	<mark>8 j</mark>	0.2475(9)	0.2475(9)	0.3582(3)	0.5	2.06(8)
F1	<mark>8</mark> j	0.2475(9)	0.2475(9)	0.3582(3)	0.5	2.06(8)
F2	4 f	0.2490(9)	0.2490(9)	0	1	0.72(8)
Na1	8 i	0.5156(7)	0.2360(9)	0	0.8(1)	2.0(1)
Na2	8 i	0.8061(8)	0.037(1)	0	0.7(1)	5.9(4)

Table S3: Structural parameters obtained from Rietveld refinement of NVPF2O prepared frompyrophosphate source.

		NVPFO ₂				
S.G.: $P4_2/mnm; Z = 4$ $R_{Bragg} = 5.05\%$						
03231(5) Å; <i>c</i> = 10.619	17(7) Å; $V = 866.33$	9(9) Å ³ ; $V/Z = 216$.584(2) Å ³		$R_{wp} = 12.6\%$	
					$\chi^2 = 53.8$	
	2	atomic position				
Wyckoff position	x/a	y/b	z/c	occ	B_{iso}	
8 j	0.2483(2)	0.2483(2)	0.19913(8)	1	0.78(1)	
4 d	0	0.5	0.25	1	0.8(2)	
4 e	0	0	0.2532(5)	1	0.7(2)	
16 k	0.0968(7)	0.4059(7)	0.1629(7)	1	0.8(2)	
8 j	0.0954(7)	0.0954(7)	0.154(1)	1	0.6(2)	
8 j	0.4017(7)	0.40174(6)	0.17109(1)	1	1.4(3)	
8 j	0.2483(7)	0.2483(7)	0.3508(3)	1	1.275(1)	
4 f	0.2469(7)	0.2469(7)	0	1	0.61(7)	
8 i	0.5120(6)	0.2331(7)	0	0.83(1)	1.12(1)	
8 i	0.7982(8)	0.025(1)	0	0.69(1)	5.57(4)	
	p/mnm; Z = 4 03231(5) Å; c = 10.6191 Wyckoff position 8 j 4 d 4 e 16 k 8 j 8 j	$\frac{1}{2}/mnm; Z = 4$ 03231(5) Å; $c = 10.61917(7)$ Å; $V = 866.33$ Wyckoff position $\frac{x/a}{4}$ 8 j $0.2483(2)$ 4 d 0 4 e 0 16 k $0.0968(7)$ 8 j $0.0954(7)$ 8 j $0.4017(7)$ 8 j $0.2483(7)$ 4 f $0.2469(7)$ 8 i $0.5120(6)$ 8 i $0.7982(8)$	NVPFO2 $y/mnm; Z = 4$ atomic position $03231(5)$ Å; $c = 10.61917(7)$ Å; $V = 866.339(9)$ Å ³ ; $V/Z = 216$ Wyckoff position x/a y/b 8 j $0.2483(2)$ $0.2483(2)$ 4 d0 0.5 4 e0016 k $0.0968(7)$ $0.4059(7)$ 8 j $0.0954(7)$ $0.0954(7)$ 8 j $0.2483(7)$ $0.2483(7)$ 4 f $0.2469(7)$ $0.2469(7)$ 8 i $0.5120(6)$ $0.2331(7)$ 8 i $0.7982(8)$ $0.025(1)$	NVPFO2NVPFO2 $\sqrt{mnm; Z = 4}$ 03231(5) Å; $c = 10.61917(7)$ Å; $V = 866.339(9)$ Å ³ ; $V/Z = 216.584(2)$ Å ³ atomic position $\frac{x/a}{y/b}$ $\frac{z/c}$ Wyckoff position $\frac{x/a}{0}$ $\frac{y/b}{0.2483(2)}$ $\frac{0.19913(8)}{0.19913(8)}$ 4 d00.50.254 e000.2532(5)16 k0.0968(7)0.4059(7)0.1629(7)8 j0.0954(7)0.0954(7)0.154(1)8 j0.4017(7)0.40174(6)0.17109(1)8 j0.2483(7)0.2483(7)0.3508(3)4 f0.2469(7)0.2469(7)08 i0.5120(6)0.2331(7)08 i0.7982(8)0.025(1)0	NVPFO2y/mnm; Z = 403231(5) Å; $c = 10.61917(7)$ Å; $V = 866.339(9)$ Å ³ ; $V/Z = 216.584(2)$ Å ³ atomic positionMyckoff positionx/ay/bz/c8 j0.2483(2)0.19913(8)14 d00.50.2514 e000.2532(5)116 k0.0968(7)0.4059(7)0.1629(7)18 j0.0954(7)0.0954(7)0.154(1)18 j0.4017(7)0.40174(6)0.17109(1)18 j0.2483(7)0.2483(7)0.3508(3)14 f0.2469(7)0.2469(7)018 i0.5120(6)0.2331(7)00.83(1)8 i0.7982(8)0.025(1)00.69(1)	

Table S4: Structural parameters obtained from Rietveld refinement of NVPFO2 prepared from pyrophosphate source.

Figure S2 (a) Powder X-ray diffraction pattern obtained when attempting to prepare NVPF₂O from VOPO₄ source. The Na₃V₂(PO₄)₃ and Na₃VF₆ impurities are highlighted by red star and blue circled dot symbols, respectively. The red and blue indexations below the figure are for Na₃V₂(PO₄)₃ and Na₃VF₆. (b) Lattice volume changes as a function of oxygen substitution for fluorine in NVPF_{3-2y}O_{2y} at various temperatures and times.

Figure S3 (a) The photograph of the pellets before and after the reaction (heat treated at 700 $^{\circ}$ C for 1 h) for NVPFO₂ from (VO)₂P₂O₇ source. (b) The porous and significantly expanded NVPFO₂ sample obtained from synthesis reaction of VOPO₄ source after heat treated at 700 $^{\circ}$ C for 1 h.

Figure S4 Characterization of the oxidation state of NVPF_{3-2y}O_{2y} (y = 0, 0.5, 1) samples. (a) XPS spectra of V³⁺ 2p_{3/2} and V³⁺ 2p_{1/2} energy levels in NVPF sample. (b) The appearance of both V³⁺ 2p and V⁴⁺ 2p modes in NVPF₂O sample. (c) XPS spectra of V³⁺ 2p_{3/2} and V³⁺ 2p_{1/2} energy levels in NVPFO₂ sample.

Figure S5 *In situ* high-temperature x-ray diffraction patterns (in 2D contour plots) during the solid-state synthesis of (a) NVPF₂O from VPO₄, VOPO₄, NaF, and Na₂CO₃ (eq.4), (b) NVPFO₂ from VOPO₄, NaF, and Na₂CO₃ mixture (eq.5). (Left) Temperature ramps used over time. The temperature range was from 25 to 700 °C.

Figure S6 *In situ* high-temperature X-ray diffraction patterns (in 2D contour plots) during the solid-state synthesis of (a) NVPF_p1 from VPO₄ (V₂O₅, ThermoFisher Scientific; >99.99%) and NaF (abcr GmbH; 99.995%). (Left) Temperature ramps used over time. The temperature range was from 25 to 700 °C. (b) NVPF_p2 from VPO₄ (V₂O₅, Sigma-Aldrich *Co.* Ltd.; 99.95%) and NaF (Grüssing GmbH; >99.0%). (Left) Temperature ramps used over time. The temperature range was from 25 to 700 °C. Note that this experiment was done with quartz rather than sapphire capillary, hence the different background.

Figure S7 Scanning electron microscopy images of (a) V₂O₅, ThermoFisher Scientific; >99.99%, (b) V₂O₅, Sigma-Aldrich *Co.* Ltd.; 99.95%, (c) NaF, abcr GmbH; 99.995%, (d) NaF, Grüssing GmbH; >99.0%). The average particle sizes of V₂O₅ are in the range of 500 nm to 1 μ m (ThermoFisher Scientific; >99.99%), and 1 to 2 μ m (Sigma-Aldrich *Co.* Ltd.; 99.95%) for NVPF_p1 and NVPF_p2, respectively, while the corresponding values for NaF are in the range of 1 to 5 μ m (abcr GmbH; 99.995%), and 20 to 25 μ m (Grüssing GmbH; >99.0%) for NVPF1 and NVPF2, respectively.

Figure S8 1st cycle charge-discharge profiles at C/20 for NVPF, NVPF₂O, and NVPFO₂ prepared from (VO)₂P₂O₇ source. The arrow signs around 3.4 V indicate small voltage steps during discharge. (b) 1, 3, 5 and 10th cycle charge-discharge profiles at C/20 for NVPFO₂ cathode. The arrow sign around 3.4 V indicates voltage step at 1, 3 and 5th cycles before completely disappearing at 10th cycle.

Figure S9 Electrochemical performances of NVPF_{3-2y}O_{2y} (y = 0.5, 1) samples prepared from VOPO₄ source in 2.2-4.3 V vs Na⁺/Na. (a) potential profiles for the 10th cycles at C/20 rate, (b) corresponding derivative curves for the 10th cycles, (c) rate performance, and (d) cycling performance at C/10 rate.

Note 1. Kinetic Properties: Diffusion rate from CV Rate Test

Regarding electrode kinetics, we also measured cyclic voltammetry for our electrode materials. The linear relationship between i_p and $v^{1/2}$ confirms diffusion-controlled behaviour in all the electrodes. The Na⁺ diffusion coefficients (D_{Na}) are calculated using the Rendles-Sevcik equation as follows.

$$\frac{i_p}{m} = 0.4463 \left(\frac{F^3}{RT}\right)^{1/2} n^{3/2} A D^{1/2} C v^{1/2} \qquad \dots \qquad \dots \qquad (1)$$

Where i_p is the peak current, *m* is the active mass (3.36, 3.92, and 3.36 mg for NVPF, NVPF₂O, and NVPFO₂, respectively) *F* is the Faraday constant (= 96,485 C mol⁻¹), *R* is the gas constant (8.314 J K⁻¹ mol⁻¹), *T* is the absolute temperature (298.15 K), *n* is the number of electrons per molecule involved in the reaction (=2), *A* is the active surface area of the cathodes (~0.50265 cm²), *C* is the molar concentration of sodium ions in the electrodes (calculate as 0.022685, 0.022845, 0.022997 mol cm⁻³ for NVPF, NVPF₂O, and NVPFO₂, respectively).

The diffusion coefficients for the different electrodes are tabulated as follows.

Table S5: Diffusion coefficients extracted from the CV curves of Figure S10.

	Cathodic peaks			Anodic peaks		
Electrode	Slo	ope	Davg	Slo	ope	Davg
NVPF	0.63	3(1)	5.28×10 ⁻⁹	0.59	9(6)	4.63×10 ⁻⁹
NVPF ₂ O	0.56(3)	0.85(1)	1.35×10 ⁻⁸	0.52(7)	0.60(1)	8.28×10 ⁻⁹
NVPFO ₂	0.74(2)	0.95(3)	1.86×10 ⁻⁸	0.6(1)	0.80(1)	1.29×10 ⁻⁸

Figure S10: Cyclic voltammograms at 0.05–1.05 mV s⁻¹ and corresponding peak current density (i_p/m) vs square root of the scanning rate ($v^{1/2}$): (a-b) NVPF electrode, (c-d) NVPF₂O electrode and (e-f) NVPFO₂ electrode.

Figure S11 Electrochemical cycling performance of NVPF_{3-2y}O_{2y} (y = 0, 0.5, 1) cathodes in 2.2-4.3 V vs Na⁺/Na at C/10 rate. Cells were cycled in duplets.