Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Determination of the ion-conduction properties of Na₃OBr and its

dominant defect species

Reona Miyazaki^{1*}, Shiori Ito¹, Kana Ishigami², Hidetoshi Miyazaki¹, and Takehiko Hihara¹

1 Department of Physical Science and Engineering, Graduate School of Engineering,

Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya 466-8555, Japan

2 Creative Engineering Program, Graduate School of Engineering,

Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya 466-8555, Japan

1. Particle morphology of the Na₂O/Na mixed powder

Na₂O (purity 80 %, Aldrich) and pieces of Na metal were mixed by S. S. mortar, resulting in a fine mixed powder. Fine powders with several micro meters were aggregated and coalesced.

Figure S1: SEM image of Na₂O/Na mixed powder before the purification

2. XRD patterns of Ca²⁺-doped Na₃OBr

Fig. S2(a) shows XRD patterns of Ca²⁺-doped Na₃OBr. Compositional dependence of lattice parameters and 110 peak widths are presented in Fig. S2(b). Lattice parameter of Na₃OBr was decreased for lower Ca²⁺ concentration, which is explained by the substitution of Na⁺ (1.02 Å) by smaller Ca²⁺ (1.00 Å). On the other hands, further increase of Ca^{2+} concentration resulted in the lattice expansion. By increasing Ca^{2+} concentration, the peak widths were broadened although the samples were post-annealed under the same conditions (350 °C for 2 hours). The lattice disordering by vacancies has been reported for e.g., ion-irradiated CeO₂ [Quantum Beam Sci. 2020, 4, 26]. Although the relation between the lattice disordering and the cation vacancies in Na₃OBr has not been specifically investigated, at present, we believe that the peak broadening for higher Ca^{2+} concentration is owing to the increase of Na⁺ vacancies. The results in Fig. S2 indicate the positive correlation between the peak broadening and the lattice expansion by Ca^{2+} doping. The increase of lattice parameters by vacancies has been reported for some ceramics (e.g., CeO₂ and KCl) [Thin Solid Films, 207 (1992) 288, C. Kittel, Introduction to Solid State Physics 7th edition, Chap. 18, 542-543]. Hence, it is predicted that cation vacancies contribute for the expansion of Na₃OBr lattice. The non-linear variation of the lattice parameters in Fig. S2 can be explained by the competing effects of the substitution of Ca^{2+} ions (lattice shrinkage) and the introduction of cation vacancies (lattice expansion).

Figure S2: XRD patterns of Ca^{2+} -doped Na₃OBr. Bottom, middle and top data represent the Ca concentration of 0.83, 1.67 and 3.33 mol%, respectively. (b): Compositional dependence of lattice parameters (black) and 110 peak widths (blue).

3. Variations of the relative peak intensity ratio of Na₃OBr with/without excess Br⁻ on O²⁻ sites

The relative intensities of the diffraction peaks of Na₃OBr were clearly changed by introducing the excess Br⁻ on O²⁻ sites with Na vacancies. The most significant variation is the intensity ratio of 110/111 peaks. Relative intensity of 110 was increased for Na₃OBr with the excess Br⁻ (5 mol%) on O²⁻ sites and Na vacancies (5 mol%) compared to the perfect crystal.

Figure S3: Simulated XRD pattens of Br-rich and perfect Na₃OBr

 Compositional dependence of the lattice parameters for Br⁻-rich Na₃OBr

Figure S4: The lattice parameters of Na₃OBr with excess Br⁻ concentration. The data for non-doped Na₃OBr is plotted by black circle.

5. XRD pattern of Ca²⁺-doped Na₃OBr after sintering above $400 \ ^{\circ}C$

To densify the pellet, Ca^{2+} -doped Na₃OBr was sintered at 600 °C for 1 h in a glove box. After sintering, *RP* phase (Na₄OBr₂) was observed, indicating the decomposition of *AP* phase. The segregation of the *RP* phase (Br-rich phase) indicates the presence of residual Na₂O followed by the decomposition reaction (2Na₃OBr \rightarrow Na₄OBr₂ + Na₂O). However, diffraction peaks of Na₂O were not confirmed in this study. The detailed mechanism of the phase separation into *RP* and *AP* phases has not been understood.

Figure S5: XRD pattern of Ca²⁺-doped Na₃OBr after sintering at 600 °C in a glove box

6. Crystallite size and lattice strain of Na₃OBr

Crystallite size and lattice strain of as-milled, sintered at 400 °C and hot-pressed Na₃OBr were estimated from the peak width of XRD patterns. The calculations were based on the data obtained by MiniFlex ($\lambda = 1.54$ Å).

Figure S6: Williamson-Hall plots of Na₃OBr prepared under three conditions

Table S1: Crystallite size and lattice strain of Na₃OBr estimated from Williamson-Hall plots

Na3OBr	Crystallite size / nm	Lattice strain
As-milled	22	0.032
400 °C, 2h	55	0.0044
350 °C, 1h, 450 MPa	23	0.0112

7. Variation of the crystalline phase after conductivity measurement

Figure S7: XRD patterns of Na₃OBr-based materials after conductivity measurement. Diffraction peaks of NaBr are presented by black circles.