Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

1

Supporting Information

- 2 Enhanced Photoelectrochemical Oxidation of Glycerol to
- 3 Dihydroxyacetone Coupled with Hydrogen Generation via
- 4 Acceerative Middle Hydroxyl Dehydrogenation over a Bi⁰/Bi³⁺

5 Interface of Cascade Heterostructure

- 6 Xinyan Feng^a, Xuefan Feng^a, Fuqin Zhang^a*
- 7 ^a Powder Metallurgy Research Institute, Central South University, Changsha 410083,
- 8 PR China
- 9 * Corresponding authors: Fuqin Zhang, E-mail: <u>zhangfuqin@csu.edu.cn</u>
- 10

11 Experimental Section

12 Chemicals and materials

Ammonium metatungstate ((NH₄)₆H₂W₁₂O₄₀•xH₂O, AR, \geq 99.5%), bismuth nitrate pentahydrate (Bi(NO₃)₃•5H₂O, AR, \geq 99.0%), ammonium metavanadate (NH₄VO₃, AR, \geq 99.5%) were purchased from Macklin Reagent Co., ltd. Sulfuric acid (H₂SO₄, AR, 98%), hydrogen nitrate (HNO₃, AR, 65-68%), hydrochloric acid (HCl, AR, 37%) sodium sulfate (Na₂SO₄, AR, \geq 99.5%), oxalic acid (C₂H₂O₄, AR, \geq 99.5%) citric acid (C₆H₈O₇, AR, \geq 99.5%), and hydrazine hydrate were obtained from Sinopharm Chemical Reagent Co., Ltd. All the reagents were used without further purification.

20 PEC performance for photoanodes

The PEC performance was performed on an electrochemical workstation (CHI760E), the electrolyte was $0.5 \text{ M} \text{ Na}_2\text{SO}_4$ mixed with 0.1 M glycerol electrolyte with pH adjusted to 2 by H₂SO₄, the light source was a 300 W Xe lamp (CEL-PF300-T8) with an AM 1.5G filter, and the standard three-electrode configuration consisted of a working electrode (as-prepared photoanodes), a counter electrode (platinum foil) and a reference electrode (Ag/AgCl electrode).

Electrochemical impedance spectroscopy (EIS) was employed to determine the charge carrier mobility. EIS spectra were monitored with 5 mV AC voltage amplitude, where the frequency range was set to be $0.1-10^{6}$ Hz. The transient photocurrent response was performed without bias voltage under irradiation of a xenon lamp with an interval of 30 s for light on and off. Mott-Schottky (MS) curves were collected at the amplitude of 5 mV scanning from -0.5 V to 0.5 V (vs. Ag/AgCl) with a 1000 Hz frequency under dark condition.

The reversible hydrogen electrode (RHE) potentials were converted from the measured potentials according to the followed equation:

$$36 \quad E_{\rm RHE} = E_{\rm Ag/AgCl} + E_{\rm Ag/AgClvs.NHE} + 0.059 \times \rm pH$$
(1)

37 where $E_{Ag/AgClvs.NHE}$ is 0.197 V at 25 °C.

38 Selectivity of DHA was calculated by:

39 Selectivity (DHA)=
$$c_{\text{DHA}}/(c_{\text{DHA}} + c_{\text{GLD}} + c_{\text{GA}} + c_{\text{FA}}) \times 100\%$$
 (2)

- 40 Faradaic efficiency was calculated by:
- 41 Faradaic efficiency = $e_{\text{products}} \times n_{\text{products}} \times N/(Q/n) \times 100\%$ (3)
- 42 where e_{products} is the number of holes required to oxidize glycerol molecule to products,
- 43 including DHA (e = 2), GLD (e = 2), GA (e = 2), FA (e = 8), n_{products} is the productivity
- 44 of products, N is Avogadro's constant ($N = 6.02 \times 10^{23}$), Q is the quantity of electric
- 45 charge, and *n* is the elementary charge ($e = 1.602 \times 10^{-19}$ C).

47 Fig. S1. (a) SEM image of BiVO₄ (top-view). (b) SEM image of BiVO₄ (cross-view).

48 (c) SEM image of WO₃/BiVO₄ (top-view). (d) SEM image of WO₃/BiVO₄ (cross49 view).

51 Fig. S2. (a) Top-view SEM image of WO₃/BiVO₄-30. (b) Top-view SEM image of

52 $WO_3/BiVO_4$ -40. (c) Top-view SEM image of $WO_3/BiVO_4/Bi$ -0.15%. (d) Top-view

53 SEM image of $WO_3/BiVO_4/Bi-0.20\%$.

54

56 Fig. S3. XRD patterns of WO₃/BiVO₄/Bi and WO₃/BiVO₄/Bi-0.20%.

58 Fig. S4. LSV curves of WO₃/BiVO₄-10, WO₃/BiVO₄-20 (WO₃/BiVO₄), WO₃/BiVO₄-

59 30 and $WO_3/BiVO_4$ -40 photoanodes.

Fig. S6. High performance liquid chromatography (HPLC, UV detector = 210 nm)
spectra of the PEC glycerol oxidation products over WO₃/BiVO₄/Bi photoanode for 1
h.

68 $WO_3 = BiVO_4 = WO_3/BiVO_4 = WO_3/BiVO_4/Bi$ 69 Fig. S7. DHA selectivity and faradaic efficiency in 0.5 M Na₂SO₄ (pH = 2) with 0.1 M

- 70 glycerol over WO₃, BiVO₄, WO₃/BiVO₄ and WO₃/BiVO₄/Bi photoanodes at 1.2 V vs.
- 71 RHE under AM 1.5G illumination (100 mW cm⁻²).

73 Fig. S8. J-t stability tests of WO₃ and WO₃/BiVO₄/Bi photoanodes measured at 1.2 V

74 vs. RHE for 10 h.

75

72

77 RHE with and without glycerol.

78 Table S1. Bi element contents of electrolyte after reaction for 1 h, 5 h and 10 h by

79	inductively	coupled p	lasma-atomic	emission spect	roscopy (I	CP-AES).
----	-------------	-----------	--------------	----------------	------------	----------

Sample	Bi content (%)	
electrolyte (1 h)	<0.0001%	
electrolyte (5 h)	<0.0001%	
electrolyte (10 h)	<0.0001%	

80

Fig. S10. Productivity of products in the WO₃/BiVO₄/Bi-Pt tandem cell measured at
1.2 V vs. RHE for 10 h.

Fig. S11. Photographs of the large size $(5 \times 4 \text{ cm}^2)$ photoanodes. (a, b) WO₃ photoanode (c, d) WO₃/BiVO₄ photoanode (e, f) WO₃/BiVO₄/Bi photoanode.

90 Fig. S13. Photoelectrocatalytic production rate of oxidation products on large-sized as-91 prepared photoanodes.

89

93 94 Eig

Fig. S14. Schematic energy band diagrams of WO₃, BiVO₄ and BiVO₄/Bi before contact. E_g , band gap; E_F , Fermi level; E_C , conduction band position; E_V , valence band position.