Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Enhancing Electrostatic Potential Difference of High Entropy

Perovskite Fluorides by Ligand Modification for Promoted Dynamic

Reconstruction

Zeyu Hao^{a,1}, Zhengyan Du^{a,1}, Ting Deng^a, Dong Wang^a, Yi Zeng^a, Shansheng Yu^a,

Zeshuo Meng^{a,*}, Xiaoying Hu^{b,*}, Xiufeng Hao^{c,*}, Hongwei Tian^{a,*}

^a Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China

^b College of Science and Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun 130022, China

^c Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China

E-mail: <u>mengzs21@mails.jlu.edu.cn</u> (Z.S. Meng); <u>huxy@ccu.edu.cn</u> (X.Y. Hu); <u>haoxf@jlu.edu.cn</u> (X.F. Hao); <u>tianhw@jlu.edu.cn</u> (H.W. Tian).

¹ These authors contributed equally to this work.

Figure S1 SEM images of (a-b) HEPF, (c-d) HEPF-100, (e-f) HEPF-200, and (g-h) FNS-300.

Figure S2 SEM energy dispersive spectrum (EDS) mappings of HEPF.

	K	Co	Cr
Mn	Fe	Ni	F

Figure S3 EDS mappings of HEPF-100.

Figure S4 EDS mappings of HEPF-200.

Figure S5 EDS mappings of HEPF-300.

Figure S6 N_2 adsorption-desorption isotherms of (a) HEPF, (b) HEPF-100, (c) HEPF-200, and (d) HEPF-300. The corresponding pore size distributions of (e) HEPF, (f) HEPF-100, (g) HEPF-200, and (h) HEPF-300.

Figure S7 (a) The XPS survey scan of HEPF, and HEPF-X (X=100, 200, 300). XPS spectra of (b) K 2p for HEPF, and HEPF-X (X=100, 200, 300). (c) XPS spectra of (b) N 1s for HEPF-X (X=100, 200, 300).

Figure S8 XPS spectra of (a) Co 2p, (b) Cr 2p, (c) Fe 2p, (d) Mn 2p, (e) Ni 2p, and (f)

F 1s for HEPF-100 and HEPF-300.

b а 5 5 20 mV s⁻¹ 20 mV s⁻¹ 40 mV s⁻¹ 60 mV s⁻¹ 4 4 Current density (mA cm⁻²) Current density (mA cm⁻²) 40 mV s⁻¹ 60 mV s⁻¹ 80 mV s⁻¹ 3. 3 80 mV s⁻¹ 100 mV s⁻¹ 2 2 100 mV s⁻¹ 1 1 0 0 -2 -2 -3 -3 HEPF-100 HEPF -4 -4 1.22 1.22 1.12 1.14 1.16 1.18 1.20 1.12 1.16 1.18 1.20 1.24 1.14 1.24 Potential (V vs. RHE) Potential (V vs. RHE) d С 5 5 20 mV s⁻¹ 20 mV s⁻¹ 40 mV s⁻¹ 60 mV s⁻¹ 4 4 Current density (mA cm⁻²) 40 mV s⁻¹ Current density (mA cm⁻²) 60 mV s⁻¹ 80 mV s⁻¹ 3 3 80 mV s⁻¹ 100 mV s⁻¹ 2 2 100 mV s⁻¹ 1 1 0 0 -1 -2 -2 -3 -3 HEPF-200 HEPF-300 -4 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.12 1.14 1.16 1.18 1.20 1.22 1.24 Potential (V vs. RHE) Potential (V vs. RHE)

Figure S9 CV measurements for C_{dl} of (a) HEPF, (b) HEPF-100, (c) HEPF-200, and (d) HEPF-300.

Figure S10 The normalized LSV curves of HEPF, HEPF-100, HEPF-200, and HEPF-

300 catalysts based on the ECSA.

Figure S11 (a) CVs of different samples in pH=7 phosphate buffer solution at a scan rate of 50 mV s⁻¹. LSV curves normalized by (b) TOF.

The absolute components of voltammetry charges (cathodic and anodic) were obtained from the CV curves at potentials of -0.2 V to 0.6 V vs. RHE in pH=7 phosphate buffer solution (PBS) at 50 mV s⁻¹. The turnover frequency (TOF) was determined by the following equations:

n = Q/4F

TOF = I/4Fn

where I represent the current (A) during LSV measurements, Q refers to the number of voltammetry charges (C), n denotes the number of active sites (mol), and F is the Faraday constant (96500 C mol⁻¹). The factor of 1/4 in the equations represents the four electrons needed to form one oxygen molecule from two oxygen atoms.

Figure S12 Nyquist plots for (a) HEPF and (c) HEPF-200 at different applied potentials vs. RHE in 1 M KOH. Phase angle vs. log (frequency) plots of EIS data recorded at various voltages for (b) HEPF and (d) HEPF-200.

Figure S13 XRD patterns of HEPF and HEPF-200 after the chronopotentiometry stability test.

Figure S14 (a) SEM image and (b) EDS mappings of HEPF-200 after the chronopotentiometry stability test.

Figure S15 Raman spectroscopy for HEPF and HEPF-200 after the chronopotentiometry stability test.

Figure S16 Co 2p XPS spectra of (a) HEPF and (b) HEPF-200 at different CV cycles.

Figure S17 XPS spectra measured at different CV cycles of O 1s for (a) HEPF and (b)

HEPF-200 during the OER process.

Figure S18 XRD patterns of synthesized $K(CoMnFeNiCrZnMgAl)F_3$ and $K(CoMnFeNiCrZnMgAl)F_3$ -PVP.

Figure S19 XPS spectra of (a) Full spectra, (b) K 2p, (c) Co 2p, (d) Mn 2p, (e) Fe 2p, (f) Ni 2p, (g) Cr 2p, (h) Zn 2p, (i) Mg 2p, (j) Al 2p, and (k) F 1s for K(CoMnFeNiCrZnMgAl)F₃ and K(CoMnFeNiCrZnMgAl)F₃-PVP. XPS spectra of (l) N for K(CoMnFeNiCrZnMgAl)F₃-PVP.

Figure S20 SEM images of (a, b) K(CoMnFeNiCrZnMgAl)F₃, and (c, d) K(CoMnFeNiCrZnMgAl)F₃-PVP.

Figure S21 EDS mappings of K(CoMnFeNiCrZnMgAl)F₃.

	K	Со	Mn	Fe	Ni
A starting					
1 Manhan	Cr	Zn	Mg	Al	F An Ar Differ Same
C. M.					

ANY -	K	Со	Mn	Fe	Ni
Cr	Zn	Mg	Al	F	Ν

Figure S22 EDS mappings of K(CoMnFeNiCrZnMgAl)F₃-PVP.

Figure S24 (a) LSV curves, (b) EIS of different samples, and (c) Tafel slopes of K(CoMnFeNiCrZnMgAl)F₃ and K(CoMnFeNiCrZnMgAl)F₃-PVP.

ID	Co [%]	Mn [%]	Fe [%]	Ni [%]	Cr [%]
HEPF	18.6	19.2	21.5	20.4	20.3
HEPF-100	19.7	18.8	20.5	21.4	19.6
HEPF-200	20.7	17.9	21.4	19.2	21.4
HEPF-300	19.2	19.6	20.2	20.6	20.4

Table S1 Chemical compositions of HEPF and HEPF-X.

The chemical compositions of HEPF and HEPF-X were determined by inductively coupled plasma mass spectrometry (ICP-MS). As shown in Table S1, the mole fraction of each B-site element was estimated to about 0.2, indicating a molar ratio of the five metal elements at the B-site of 1:1:1:1:1.

Since the formation of high-entropy phases is mainly driven by high configurational entropy, it can be concluded that such high configurational entropy might have originated from multi-element mixing. The molar configuration entropy of HEPF was calculated following equation:

$$S = -R \sum_{i=1}^{N} x_i ln x_i$$

where R is the ideal gas constant and x_i is the mole fraction of the corresponding element. The molar configuration entropy was greater than 1.5 R, further proving the high-entropy nature of the synthesized HEPF material.

	Surface Area (m ² g ⁻¹)	Pore Size (cm ³ g ⁻¹)
HEPF	145.09	0.49
HEPF-100	143.45	0.49
HEPF-200	136.18	0.47
HEPF-300	132.74	0.49

 Table S2 The BET specific surface area and BJH pore size of different catalysts.

	C0 ³⁺ /C0 ²⁺
HEPF	2.49
HEPF-200	1.93

Table S3 The ratios of Co^{3+}/Co^{2+} in HEPF and HEPF-200.

Table S4 C-N binding energy in the N 1s XPS spectrum of HEPF-X (X = 100, 200,300).

Samples	HEPF-100	HEPF-200	HEPF-300
Binding energy/eV	399.90	399.50	399.24

Samples	C _{dl} (mF cm ⁻²)	C _s (mF cm ⁻²)	ECSA
HEPF	2.29	0.04	57.25
HEPF-100	4.72		118
HEPF-200	5.63		140.75
HEPF-300	3.41		85.25

Table S5 The calculation process of ECSA of HEPF, and HEPF-X (X=100, 200, 300).

Samples	Overpotential (mV)	Catalyst loading amount	Ref.
K(MgMnFeCoNi)F ₃	397	0.7 mg cm ⁻²	[1]
[LaM(III)O ₃] _{3/4} [KM(II)F ₃] _{1/4}	345	0.7 mg cm ⁻²	[2]
NaCo _{1-2x} Fe _x Ni _x F ₃	265	0.35 mg cm ⁻²	[3]
KNi _{0.8} Co _{0.2} F ₃	310	0.7 mg cm ⁻²	[4]
(NH4)3FexCo _{1-x} F6	243	0.2 mg cm ⁻²	[5]
HEPF-200	242	0.5 mg cm ⁻²	This work

 Table S6 Comparison of overpotential with other OER catalysts.

	$R_{s}(\Omega)$	$ m R_{ct}\left(\Omega ight)$
HEPF	1 68	5.85
	1.00	
HEPF-100	1.63	3.91
HEPF-200	1.43	2.97
HEPF-300	1.48	4.44

Table S7 EIS data of HEPF and HEPF-X ($X = 100, 200, 3$	00).
---	------

Samples	Со	Mn	Fe	Ni	Cr
HEPF	0.0038 mg/L	0.0071 mg/L	0.0053 mg/L	0.0079 mg/L	0.0042 mg/L
HEPF-200	0.0021 mg/L	0.0095 mg/L	0.0114 mg/L	0.0071 mg/L	0.0138 mg/L

 Table S8 The contents of ion in electrolyte after CV activation from the ICP results.

Table S9 Chemical compositions of $K(CoMnFeNiCrZnMgAl)F_3$ and $K(CoMnFeNiCrZnMgAl)F_3$ -PVP.

	Со	Mn	Fe	Ni	Cr	Zn	Mg	Al
K(CoMnFeNiC	11.3%	13.2%	11.5%	12.4%	11.9%	12.7%	13.4%	13.6%
rZnMgAl)F ₃								
K(CoMnFeNiC	13.8%	12.6%	14.3%	12.9%	11.5%	12.7%	11.8%	10.4%
rZnMgAl)F ₃ -								
PVP								

Table S10 EIS data of K(CoMnFeNiCrZnMgAl)F $_3$ and K(CoMnFeNiCrZnMgAl)F $_3$ -PVP.

	$\mathrm{R}_{\mathrm{s}}\left(\Omega ight)$	$\mathrm{R}_{\mathrm{ct}}\left(\Omega ight)$
K(CoMnFeNiCrZnMgAl)F3	1.51	5,71
K(CoMnFeNiCrZnMgAl)F ₃ -PVP	1.46	4.92

References

- [1] T. Wang, H. Chen, Z. Yang, J. Liang, S. Dai, *Journal of the American Chemical Society* **2020**, *142*, 4550-4554.
- T. Wang, J. Fan, C.-L. Do-Thanh, X. Suo, Z. Yang, H. Chen, Y. Yuan, H. Lyu, S. Yang, S. Dai, *Angewandte Chemie-International Edition* 2021, 60, 9953-9958.
- [3] H. Yao, Y. Zheng, S. Yue, S. Hu, W. Yuan, X. Guo, *Inorganic Chemistry* Frontiers 2023, 10, 804-814.
- [4] S. G. Chandrappa, P. Moni, D. Chen, G. Karkera, K. R. Prakasha, R. A. Caruso, A. S. Prakash, *ACS Applied Energy Materials* **2021**, *4*, 13425-13430.
- [5] Y. Li, J. Li, X. Zhai, Y. Liu, G. Wang, X. Yang, G. Ge, ACS Applied Energy Materials 2022, 5, 13981-13989.