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Figure S1 SEM images of (a-b) HEPF, (c-d) HEPF-100, (e-f) HEPF-200, and (g-h) 

FNS-300.
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Figure S2 SEM energy dispersive spectrum (EDS) mappings of HEPF.



4

Figure S3 EDS mappings of HEPF-100.
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Figure S4 EDS mappings of HEPF-200.



6

Figure S5 EDS mappings of HEPF-300.
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Figure S6 N2 adsorption-desorption isotherms of (a) HEPF, (b) HEPF-100, (c) HEPF-

200, and (d) HEPF-300. The corresponding pore size distributions of (e) HEPF, (f) 

HEPF-100, (g) HEPF-200, and (h) HEPF-300.
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Figure S7 (a) The XPS survey scan of HEPF, and HEPF-X (X=100, 200, 300). XPS 

spectra of (b) K 2p for HEPF, and HEPF-X (X=100, 200, 300). (c) XPS spectra of (b) 

N 1s for HEPF-X (X=100, 200, 300).
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Figure S8 XPS spectra of (a) Co 2p, (b) Cr 2p, (c) Fe 2p, (d) Mn 2p, (e) Ni 2p, and (f) 

F 1s for HEPF-100 and HEPF-300.
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Figure S9 CV measurements for Cdl of (a) HEPF, (b) HEPF-100, (c) HEPF-200, and 

(d) HEPF-300.
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Figure S10 The normalized LSV curves of HEPF, HEPF-100, HEPF-200, and HEPF-

300 catalysts based on the ECSA.
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Figure S11 (a) CVs of different samples in pH=7 phosphate buffer solution at a scan 

rate of 50 mV s-1. LSV curves normalized by (b) TOF.

The absolute components of voltammetry charges (cathodic and anodic) were 

obtained from the CV curves at potentials of -0.2 V to 0.6 V vs. RHE in pH=7 

phosphate buffer solution (PBS) at 50 mV s-1. The turnover frequency (TOF) was 

determined by the following equations: 

n = Q/4F

TOF = I/4Fn

where I represent the current (A) during LSV measurements, Q refers to the 

number of voltammetry charges (C), n denotes the number of active sites (mol), and F 

is the Faraday constant (96500 C mol-1). The factor of 1/4 in the equations represents 

the four electrons needed to form one oxygen molecule from two oxygen atoms.
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Figure S12 Nyquist plots for (a) HEPF and (c) HEPF-200 at different applied 

potentials vs. RHE in 1 M KOH. Phase angle vs. log (frequency) plots of EIS data 

recorded at various voltages for (b) HEPF and (d) HEPF-200.
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Figure S13 XRD patterns of HEPF and HEPF-200 after the chronopotentiometry 

stability test.
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Figure S14 (a) SEM image and (b) EDS mappings of HEPF-200 after the 

chronopotentiometry stability test.
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Figure S15 Raman spectroscopy for HEPF and HEPF-200 after the 

chronopotentiometry stability test.
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Figure S16 Co 2p XPS spectra of (a) HEPF and (b) HEPF-200 at different CV cycles. 

Cr 2p XPS spectra of (c) HEPF and (d) HEPF-200 at different CV cycles.  
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Figure S17 XPS spectra measured at different CV cycles of O 1s for (a) HEPF and (b) 

HEPF-200 during the OER process.
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Figure S18 XRD patterns of synthesized K(CoMnFeNiCrZnMgAl)F3 and 

K(CoMnFeNiCrZnMgAl)F3-PVP.
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Figure S19 XPS spectra of (a) Full spectra, (b) K 2p, (c) Co 2p, (d) Mn 2p, (e) Fe 2p, 

(f) Ni 2p, (g) Cr 2p, (h) Zn 2p, (i) Mg 2p, (j) Al 2p, and (k) F 1s for 

K(CoMnFeNiCrZnMgAl)F3 and K(CoMnFeNiCrZnMgAl)F3-PVP. XPS spectra of (l) 

N for K(CoMnFeNiCrZnMgAl)F3-PVP.
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Figure S20 SEM images of (a, b) K(CoMnFeNiCrZnMgAl)F3, and (c, d) 

K(CoMnFeNiCrZnMgAl)F3-PVP.
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Figure S21 EDS mappings of K(CoMnFeNiCrZnMgAl)F3.
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Figure S22 EDS mappings of K(CoMnFeNiCrZnMgAl)F3-PVP.
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Figure S23 Raman spectroscopy of K(CoMnFeNiCrZnMgAl)F3 and 

K(CoMnFeNiCrZnMgAl)F3-PVP.
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Figure S24 (a) LSV curves, (b) EIS of different samples, and (c) Tafel slopes of 

K(CoMnFeNiCrZnMgAl)F3 and K(CoMnFeNiCrZnMgAl)F3-PVP.
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Table S1 Chemical compositions of HEPF and HEPF-X.

ID Co [%] Mn [%] Fe [%] Ni [%] Cr [%]

HEPF 18.6 19.2 21.5 20.4 20.3

HEPF-100 19.7 18.8 20.5 21.4 19.6

HEPF-200 20.7 17.9 21.4 19.2 21.4

HEPF-300 19.2 19.6 20.2 20.6 20.4

The chemical compositions of HEPF and HEPF-X were determined by 

inductively coupled plasma mass spectrometry (ICP-MS). As shown in Table S1, the 

mole fraction of each B-site element was estimated to about 0.2, indicating a molar 

ratio of the five metal elements at the B-site of 1:1:1:1:1.

Since the formation of high-entropy phases is mainly driven by high 

configurational entropy, it can be concluded that such high configurational entropy 

might have originated from multi-element mixing. The molar configuration entropy of 

HEPF was calculated following equation:

𝑆=‒ 𝑅
𝑁

∑
𝑖= 1

𝑥𝑖𝑙𝑛𝑥𝑖

where R is the ideal gas constant and xi is the mole fraction of the corresponding 

element. The molar configuration entropy was greater than 1.5 R, further proving the 

high-entropy nature of the synthesized HEPF material.
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Table S2 The BET specific surface area and BJH pore size of different catalysts.

Surface Area (m2 g–1) Pore Size (cm3 g-1)

HEPF 145.09 0.49

HEPF-100 143.45 0.49

HEPF-200 136.18 0.47

HEPF-300 132.74 0.49
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Table S3 The ratios of Co3+/Co2+ in HEPF and HEPF-200.

Co3+/Co2+

HEPF 2.49

HEPF-200 1.93
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Table S4 C-N binding energy in the N 1s XPS spectrum of HEPF-X (X = 100, 200, 

300).

Samples HEPF-100 HEPF-200 HEPF-300

Binding energy/eV 399.90 399.50 399.24
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Table S5 The calculation process of ECSA of HEPF, and HEPF-X (X=100, 200, 300).

Samples Cdl (mF cm-2) Cs (mF cm-2) ECSA

HEPF 2.29 57.25

HEPF-100 4.72 118

HEPF-200 5.63 140.75

HEPF-300 3.41

0.04

85.25
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Table S6 Comparison of overpotential with other OER catalysts.

Samples Overpotential (mV) Catalyst loading amount Ref.

K(MgMnFeCoNi)F3 397 0.7 mg cm-2
[1]

[LaM(III)O3]3/4[KM(II)F3]1/4 345 0.7 mg cm-2
[2]

NaCo1-2xFexNixF3 265 0.35 mg cm-2
[3]

KNi0.8Co0.2F3 310 0.7 mg cm-2
[4]

(NH4)3FexCo1–xF6 243 0.2 mg cm-2
[5]

HEPF-200 242 0.5 mg cm-2 This work
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Table S7 EIS data of HEPF and HEPF-X (X = 100, 200, 300).

Rs (Ω) Rct (Ω)

HEPF 1.68 5.85

HEPF-100 1.63 3.91

HEPF-200 1.43 2.97

HEPF-300 1.48 4.44
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Table S8 The contents of ion in electrolyte after CV activation from the ICP results.

Samples Co Mn Fe Ni Cr

HEPF 0.0038 mg/L 0.0071 mg/L 0.0053 mg/L 0.0079 mg/L 0.0042 mg/L

HEPF-200 0.0021 mg/L 0.0095 mg/L 0.0114 mg/L 0.0071 mg/L 0.0138 mg/L
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Table S9 Chemical compositions of K(CoMnFeNiCrZnMgAl)F3 and 

K(CoMnFeNiCrZnMgAl)F3-PVP.

Co Mn Fe Ni Cr Zn Mg Al

K(CoMnFeNiC

rZnMgAl)F3

11.3% 13.2% 11.5% 12.4% 11.9% 12.7% 13.4% 13.6%

K(CoMnFeNiC

rZnMgAl)F3-

PVP

13.8% 12.6% 14.3% 12.9% 11.5% 12.7% 11.8% 10.4%
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Table S10 EIS data of K(CoMnFeNiCrZnMgAl)F3 and K(CoMnFeNiCrZnMgAl)F3-

PVP.

Rs (Ω) Rct (Ω)

K(CoMnFeNiCrZnMgAl)F3 1.51 5,71

K(CoMnFeNiCrZnMgAl)F3-PVP 1.46 4.92
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