# Electronic perturbation by interfacial coupling of the iridium cluster and Cu<sub>3</sub>P accelerates water splitting kinetics

Payam Ahmadian Koudakan<sup>a</sup>, Xiaobin Hao<sup>b</sup>, Amirabbas Mosallanezhad<sup>a</sup>, Cong Wei<sup>a</sup>, Jinyan Cai<sup>a</sup>, Junxin Xiao<sup>a</sup>, Yuqing Yang<sup>b</sup>, Bo Liu<sup>a</sup>, Jun Liu<sup>\*c</sup>, Yanyan Fang<sup>\*a</sup>, Gongming Wang<sup>\*a</sup>

<sup>a</sup>Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
<sup>b</sup>School of Materials and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China.

<sup>c</sup>Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

\*Corresponding authors E-mail: jliu@issp.ac.cn; fr1478@mail.ustc.edu.cn; wanggm@ustc.edu.cn.

### 1. Computational details:

DFT calculation was performed using the CASTEP program as implemented in the Materials Studios package of Accelrys Inc.<sup>[1]</sup> The exchange-correlation potential is described through the generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof (GGA-PBE).<sup>[2,3]</sup> The cutoff energy for the plane wave was set to 400 eV. The energy criterion was set to  $5 \times 10^{-6}$  eV in the iterative solution of the Kohn-Sham equation. We choose Cu<sub>3</sub>P(300) surface, which was identified by the high-resolution TEM technique, to represent the synthesized Cu<sub>3</sub>P catalyst. The surface slab is a  $p(2 \times 2)$  supercell with three layers and the vacuum thickness between slabs in the z direction is set to 20 Å. To model the  $Ir_{CL}$  @Cu<sub>3</sub>P catalyst, the Ir cluster (including 24 Ir atoms) is constructed on the Cu<sub>3</sub>P(300) surface (figure S14a) based on the experimental characterization. The Ir and Pt catalysts were modeled by Ir(111) and Pt(111) surfaces (figure S14b and c), which were the most preferred exposed facet in general. The two surfaces are the four-layer slabs with the  $p(3 \times 3)$  supercell and vacuum thickness of 15 Å. It is noted all catalyst models can allow sufficient distance between periodic images so that lateral interactions are minimized. The sampling of the Brillouin zone was performed with a 3×3×1 Monkhorst–Pack k-point mesh<sup>[4]</sup>. The force convergence criterion on the atoms was set to 0.03 eV Å<sup>-1</sup>. The barriers and reaction energies for H<sub>2</sub>O dissociation to OH and H on different catalyst models were calculated using linear synchronous transitions (LST) and quadratic synchronous transitions (QST) methods.<sup>[5]</sup> The free energy of hydrogen adsorption  $\Delta G_{H^*}$  at T=300 K is further calculated from  $\Delta G_{H^*} = E_{slab+H} - E_{slab} - 0.5*E_{H2} + 0.24$ eV, where the value of 0.24 eV represents the correction of zero-point energy and entropy of hydrogen state. <sup>[6]</sup> The following equations were used to calculate the fractional d-band filling ( $f_d$ ), d-band center ( $\varepsilon_d$ ), and d-band width ( $W_d$ ) <sup>[7]</sup>:



where,  $\rho$ , E and E<sub>f</sub> are the density of electronic state per volume, energy of the electron and Fermi energy, respectively.

2. Figures:



Figure S1. The Low magnification SEM images of (a)  $Cu(OH)_2$  and (b)  $Cu_3P$  (scale bar: 5  $\mu$ m); and inset: the high magnification SEM image of (a)  $Cu(OH)_2$  and (b)  $Cu_3P$  nanowire (scale bar: 500 nm).



Figure S2. XRD of the  $Cu_3P$  and  $Ir_{CL}@Cu_3P$  samples.



Figure S3. The low magnification HR-TEM image of Ir<sub>CL</sub>@Cu<sub>3</sub>P (scale bar: 5 nm).



Figure S4. The HR-TEM image of Cu<sub>3</sub>P (scale bar: 2 nm).



Figure S5: (a) Best fitting and experimental data of Cu K-edge k<sup>3</sup>-weighted EXAFS of Cu<sub>3</sub>P,  $Ir_{CL}@Cu_3P$ , and Co foil in R-space. (b) The Cu K-edge k<sup>3</sup>-weighted EXAFS in k-space for Cu<sub>3</sub>P,  $Ir_{CL}@Cu_3P$ .



**Figure S6.** (a) Normalized Cu K-edge XANES spectra of Cu<sub>3</sub>P, Ir<sub>CL</sub>@Cu<sub>3</sub>P, CuO, Cu<sub>2</sub>O, and Cu foil. (b) Linear fitting of average oxidation state toward energy of Cu K-edge.



Figure S7. The high-resolution XPS spectra of P 2p for the Cu<sub>3</sub>P and Ir<sub>CL</sub>@Cu<sub>3</sub>P samples.



Figure S8. (a) The LSV curves (b) Tafel plot and (c) comparison between  $Ir_{CL}@Cu_3P$  samples with different concentration of iridium solution.



**Figure S9.** The SEM image of Ir<sub>CL</sub>@Cu<sub>3</sub>P prepared with 10 mM iridium solution (scale bar: 300 nm).



Figure S10. Tafel plot and (inset: corresponding polarization curves) of  $Ir_{CL}@Cu_3P$  in 1M KOD.



Figure S11. Non-faradic cyclic voltammetry curves of Cu<sub>3</sub>P in 1 M KOH.



Figure S12. (a) XRD patterns of Ir<sub>CL</sub>@Cu<sub>3</sub>P before and after stability test (scale bar: 5 μm).
(b) SEM and corresponding elemental mapping of Ir<sub>CL</sub>@Cu<sub>3</sub>P after stability test.



Figure S13. XPS spectra of (a) Cu 2p and (b) Ir 4f of Ir<sub>CL</sub>@Cu<sub>3</sub>P after stability test.



Figure S14. Side and top views of (a)  $Ir_{CL}@Cu_3P$ , (b)  $Cu_3P(300)$ , (c) Ir(111), and (d) Pt(111) models.



Figure S15. The Ir-Ir bond distance in relaxed surfaces of (a)  $Ir_{CL}@Cu_3P$  and (b) Ir(111) models.



**Figure S16.** The top and side views for configurations of  $H_2O$  dissociation on  $Ir_{CL}@Cu_3P$ . (a) Initial state; (b) Transition state; (c) Final state.



**Figure S17.** The top and side views for configurations of  $H_2O$  dissociation on  $Cu_3P(300)$ . (a) Initial state; (b) Transition state; (c) Final state.



Figure S18. The top and side views of H adsorption on  $Ir_{CL}@Cu_3P$  catalyst.



Figure S19. The top and side views of H adsorption on Cu<sub>3</sub>P(300) surface.



Figure S20. Electrochemical impedance spectroscopy of  $Cu_3P$ , and  $Ir_{CL}@Cu_3P$  measured at 1.37 V vs. RHE.



Figure S21. The amperometric current-time curve of  $Ir_{CL}@Cu_3P \parallel Ir_{CL}@Cu_3P$  full cell

## 3. Tables:

| Sample                              | Test                    | Shell | R (Å) <sup>a</sup> | N <sup>b</sup> | δ <sup>2</sup> (Å) <sup>c</sup> | $\Delta E_0^{d}$ | R-factor <sup>e</sup> |
|-------------------------------------|-------------------------|-------|--------------------|----------------|---------------------------------|------------------|-----------------------|
| Ir <sub>CL</sub> @Cu <sub>3</sub> P | Ir L <sub>3</sub> -edge | Ir-Ir | 2.55               | 7.4            | 0.0031                          | 5.338            | 0.0050                |
|                                     | Cu K-edge               | Cu-Cu | 2.21               | 5.2            | 0.0167                          | 4.079            | 0.0068                |
|                                     |                         | Cu-P  | 1.93               | 2.0            | 0.0070                          | 11075            |                       |
| Cu <sub>3</sub> P                   | Cu K-edge               | Cu-Cu | 2.21               | 5.0            | 0.0165                          | 3.943            | 0.0057                |
|                                     |                         | Cu-P  | 1.93               | 2.0            | 0.0070                          |                  |                       |
| Ir foil                             | Ir L <sub>3</sub> -edge | Ir-Ir | 2.70               | 12             | 0.0024                          | 7.919            | 0.0027                |
| Cu foil                             | Cu K-edge               | Cu-Cu | 2.21               | 12             | 0.0084                          | 4.812            | 0.0016                |

**Table S1.** Fitting parameters of Ir  $L_3$ -edge and Cu K-edge scattering path for the  $Ir_{CL}@Cu_3P$  and  $Cu_3P$  samples.

a: bond length; b: coordination number; c: Debye-Waller factors; d: the inner potential correction: e: goodness of fitting.

## **Table S2.** Comparison of OWS catalysts using AEMWE.

| Catalyst                                             |                                     | Loading<br>Mass<br>(mg/cm <sup>-2</sup> ) |         | Electrolyte      | cell (V) | Ref.                                          |  |
|------------------------------------------------------|-------------------------------------|-------------------------------------------|---------|------------------|----------|-----------------------------------------------|--|
| Anode                                                | Cathode                             | Anode                                     | Cathode |                  | Ŧ        |                                               |  |
| Ir <sub>CL</sub> @Cu <sub>3</sub> P                  | Ir <sub>CL</sub> @Cu <sub>3</sub> P | 8.7                                       | 8.7     | 1 M KOH          | 1.94     | This Work                                     |  |
| IrO <sub>2</sub>                                     | Pt black                            | 3                                         | 3       | H <sub>2</sub> O | 1.9      | Chem. Mater. 2014, 26, 5675–5682.             |  |
| Ir black                                             | Pt/C                                | 2.7                                       | 2.7     | H <sub>2</sub> O | 1.9      | Joule 2021, 5, 1776–1799.                     |  |
| Ni <sub>0.75</sub> Fe <sub>2.25</sub> O <sub>4</sub> | Pt/C                                | 1                                         | 1       | 1 M KOH          | 1.9      | <i>Chem Eng J.</i> <b>2020</b> , 420, 127670. |  |

| Co <sub>3</sub> O <sub>4</sub> /rGO                  | NiCo/rGO                                                 | 1    | 1    | 1 M KOH                 | 1.9  | Renewable Energy. 2020, 154, 1122-1131.                      |
|------------------------------------------------------|----------------------------------------------------------|------|------|-------------------------|------|--------------------------------------------------------------|
| NiFe                                                 | NiFe                                                     | 20   | 20   | 1 M KOH                 | 1.93 | Energy. Sci. Technol. 2021, 14, 6338–6348.                   |
| NiCo <sub>2</sub> O <sub>4</sub>                     | $Fe_{60}Co_{20}Si_{10}B_{10}$                            | 5    | 5    | 10% KOH                 | 2    | <i>Electrochim Acta.</i> <b>2019</b> , 306, 688-697.         |
| Co NPs                                               | PtNi NWs                                                 | 0.4  | 0.1  | 1 M KOH                 | 2    | ACS Catal. 2020, 10, 9953-9966.                              |
| NiCo <sub>2</sub> O <sub>4</sub>                     | NiCo <sub>2</sub> O <sub>4</sub>                         | 2    | 2    | 1 M KOH                 | 2    | J Mater Chem A. 2020, 8, 17089-17097.                        |
| Cu <sub>0.81</sub> Co <sub>2.19</sub> O <sub>4</sub> | $Co_3S_4$                                                | -    | -    | 1 M KOH                 | 2    | <i>Int J Hydrogen Energy</i> . <b>2020</b> , 45, 36-45.      |
| Ir black                                             | NiCu alloy                                               | 3    | 5    | 1 M KOH                 | 2    | <i>Electrochim Acta.</i> <b>2021</b> , 371, 137837.          |
| Ni <sub>0.7</sub> Co <sub>0.3</sub> O <sub>X</sub>   | Pt/C                                                     | 2    | 1    | 1 wt% KHCO <sub>3</sub> | 2.03 | <i>RSC Adv.</i> <b>2016</b> , 6, 90397–90400.                |
| CuCoO <sub>X</sub>                                   | Ni/(CeO <sub>2</sub> -La <sub>2</sub> O <sub>3</sub> )/C | 30   | 7.4  | 1 wt% KHCO <sub>3</sub> | 2.05 | <i>Int. J. Hydrog. Energy</i> <b>2017</b> , 42, 10752–10761. |
| NiAl                                                 | NiAlMo                                                   | 47.9 | 42.7 | 1 M KOH                 | 2.05 | ACS Appl. Energy Mater. 2019, 2, 7903–7912.                  |
| NiFeO <sub>X</sub>                                   | NiFeCo                                                   | 5    | 5    | 1 M KOH                 | 2.09 | <i>RSC Adv.</i> <b>2020</b> , 10, 37429–37438.               |
| Ir-Ni/Mo <sub>5</sub> N <sub>6</sub>                 | Ir-Ni/Mo <sub>5</sub> N <sub>6</sub>                     | 2.5  | 2.5  | 1 M KOH                 | 2.1  | J. Colloid Interface Sci. 2022, 628, 306-3014.               |
| IrO <sub>2</sub>                                     | Pt/C                                                     | 0.6  | 0.3  | H <sub>2</sub> O        | 2.1  | ACS Appl. Mater. 2019, 11, 9696–9701.                        |
| NiFeCo                                               | Ni mesh                                                  | 7    | n/a  | 4 M NaOH                | 2.2  | Int J Hydrogen Energy <b>2020</b> , 45, 24232-24247.         |
| CuCoO                                                | Ni thin film                                             | 0.18 | 0.4  | 1 M KOH                 | 2.2  | J Power Sources. 2019, 415, 136-144.                         |
| Ni foam                                              | Ni foam                                                  | n/a  | n/a  | 1.95 M KOH              | 2.26 | <i>Electrochim. Acta</i> <b>2017</b> , 248, 547–555.         |
| Ni-Co                                                | Ni foam                                                  | 0.75 | n/a  | 0.5 M KOH               | 2.29 | Mater Chem Phys. 2020, 242, 122537.                          |
| NiCoFeO <sub>X</sub>                                 | Pt/C                                                     | 3    | 3    | H <sub>2</sub> O        | 2.3  | ACS Catal. 2019, 9, 7-15.                                    |
| IrO <sub>3</sub>                                     | Ni-Co-S                                                  | -    | -    | 1 M KOH                 | 2.4  | Int J Energy Res. 2021, 45, 1918-1931.                       |

#### 4. References:

[1] Clark, S. J. et al. First principles methods using CASTEP. Z. fuer Krist. 2005, 220, 567–570.

[2] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, **77**, 3865–3868.

[3] White, J. A.; Bird, D. M. Implementation of Gradient-Corrected Exchange-Correlation Potentials in Car-Parrinello Total-Energy Calculations. *Phys. Rev. B: Condens. Matter Mater. Phys.* 1994, **50**, 4954–4957.

[4+1] Sato, S. A. Two-step Brillouin zone sampling for efficient computation of electron dynamics in solids. *J. Phys.: Condens. Matter.* 2022, **34**, 095903.

[5] Henkelman, G.; Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. *J. Chem. Phys.* 2000, **113**, 9978–9985.

[6] Monkhorst, H. J.; Pack J. D. Special points for Brillouin-zone integrations. *Phys. Rev. B.* 1976, **13**, 5188.

[7] Seifitokaldani, A.; Savadogo, O.; Perrier, M. Density Functional Theory (DFT) Computation of the Oxygen Reduction Reaction (ORR) on Titanium Nitride (TiN) Surface. Electrochim. Acta. 2014, **141**, 25-32.