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S1. NEUTRON SCATTERING EXPERIMENTS

A. Experimental methods and data corrections

1. Experiments

All measurements were performed on the POLARIS
diffractometer [1] at the ISIS pulsed spallation neutron
source in the United Kingdom. The polycrystalline sam-
ple was contained within a thin-walled cylindrical can of
diameter 8 mm. The sample temperature was controlled
using cryostat below 300 K and furnace above 300 K.
Long measurements for analysis of the total scattering
spectrum were performed at temperatures of 10, 100, 155,
170, 293, 300, 320, 335, 350, 375, and 400 K. Shorter runs
for analysis of the powder diffraction pattern were ob-
tained at intermediate temperatures. For correction of
the total scattering data, additional measurements were
performed of the empty instrument, empty sample envi-
ronment, and empty can within the sample environment,
together with a calibration measurement from a vana-
dium rod.

2. Corrections of diffraction data

Diffraction data for crystallographic analysis were
transformed using the MANTID software [2].

3. Corrections of total scattering data

The total scattering data were corrected and trans-
formed for analysis using the GUDRUN package [3].
This accounts for sources of data attenuation and extra-
neous sources of neutron scattering and attempts to put
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the data onto an absolute scale. Some attempts are made
to account for effects associated with inelastic scattering.
These are particularly severe for scattering from light
elements, and of course, half of the atoms in methylam-
monium lead iodide are deuterium (with a small fraction
of the light hydrogen isotope). The result was that there
was a clear inconsistency between the higher-Q data from
different banks of detectors. Experience has shown that
the effects of this have the largest impact on the lowest-r
peaks in the pair distribution function.

B. Equations of total scattering

In this section we reproduce the main equations un-
derpinning the interpretation of neutron total scattering
data in our paper. We follow the formalism of two recent
reviews [4, 5]. Some issues regarding nomenclature have
been discussed explicitly in an earlier paper [6].

The standard Debye equation [7] for the intensity of
scattering of radiation from a collection of atoms, taken
as an average over all relative orientations of the sample
with respect to the neutron beam, is given as

S(Q) =
1
N ∑

j
b2

j +
1
N ∑

j 6=k
bjbk

sin(Qrjk)

Qrjk
(S1)

where Q is the modulus of the scattering vector. For elas-
tic scattering processes, Q = 4π sin θ/λ, where θ is half
the scattering angle and λ is the neutron wavelength. bj
is the scattering factor for atom labelled j, and rjk is the
distance between atoms labelled j and k. N is the total
number of atoms in the sample. In equation S1 we sep-
arate out the terms j = k because they simply form a
constant value. As noted elsewhere [5], some workers
define S(Q) with a different normalisation [6].

The summation over all pairs of atoms is better re-
placed by a sum over pairs of atom types. Accordingly
we define the partial pair distribution function (partial
PDF) by writing the number of atoms of type n lying
within a spherical shell of thickness dr at a distance r
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from an atom of type m as 4πr2dr × cnρ× gmn(r). It is
easy to show that if the atomic distributions are com-
pletely random, it will follow that gmn(r) = 1 since the

number of atoms in the shell is merely density multiplied
by the volume of the shell. The pair sum in equation S1
can be replaced by

1
N ∑

j 6=k
bjbk

sin(Qrjk)

Qrjk
= 4πρ

∫
∑
m,n

cmcnbmbnr2gmn(r)
sin(Qr)

Qr
dr (S2)

In the limit that r → ∞, gmn(r) → 1, reflecting the fact
that a shell of large radius will contain a more uniform

sample of atoms. The Fourier transform of this constant-
value high-r limit will give a delta function at Q = 0, and
thus we write

i(Q) = 4πρ
∫

∑
m,n

cmcnbmbnr2 (gmn(r)− 1)
sin(Qr)

Qr
dr = S(Q)−∑

m
cmb2

m − S0 (S3)

where the second term on the right hand side is the term
for j = k in equation S1, and S0 is the delta function at
Q = 0 arising from the limiting value of gmn(r → ∞).
We now define the overall PDF as

D(r) = 4πρr ∑
m,n

cmcnbmbn (gmn(r)− 1) (S4)

Thus we can rearrange equation S3 as

Qi(Q) =
∫ ∞

0
D(r) sin(Qr)dr (S5)

This has the reverse transformation:

D(r) =
2
π

∫ ∞

0
Qi(Q) sin(Qr)dr (S6)

The formalism used here is discussed in more detail
and compared with other formulations in reference 6.

S2. REVERSE MONTE CARLO SIMULATION

A. Basics of the Reverse Monte Carlo method

The Reverse Monte Carlo (RMC) method was per-
formed using the program RMCprofile [9], version 6.7.
Briefly, the RMC method adjusts the positions of the
atoms in a periodically repeating box of fixed size using
a standard Metropolis Monte Carlo algorithm, driven by
the requirement to give the best agreement between a
set of calculated and experimentally-measured functions.
We define an agreement function as

χ2 = ∑
m

∑
j
(yexp

j,m − ycalc
j,m )2/σ2

m (S7)

where yj,m is the point labelled j in the data set m, and the
superscripts indicate experimental or calculated values
respectively. σm is a weighting for each data set. In prin-
ciple, it should correspond to a point-by-point standard
deviation on the data, but these may not be known fol-
lowing the data corrections and Fourier transform. The
data sets we used are the scattering function i(Q), the
PDF D(r) and one of the data sets used in the Rietveld
refinement.

Within the RMC method, at each step an atom cho-
sen at random is moved by a random amount up to
some pre-defined maximum value. As a result, χ2 will
change by an amount of ∆χ2. If ∆χ2 < 0 the move is
accepted. Otherwise, the move is accepted with proba-
bility exp(−∆χ2/2). Typically the RMC simulations are
run for much longer than it takes for the value of χ2

to settle to a minimum constant average value. In our
RMC simulations, the RMC had around 340 accepted
moves per atom, with a maximum allowed displacement
of 0.05 Å applied to each atom. Thirty independent RMC
simulations were performed for each data set.

Two types of restraints were used in the RMC sim-
ulations. The first, known as the ‘distance windows’,
set maximum and minimum distance between speci-
fied pairs of neighbouring atoms. For nearest-neighbour
Pb–I pairs the limits were 3.30–5.65 Å, and for nearest-
neighbour I–I pairs the limits were 2.55–4.94 Å. A dis-
tance window with limits 1.38–1.65 Å was also applied
to the C–N bond. The second restraint was the use of in-
teratomic potential functions. These were applied to the
C–N, C–H and N–H bonds using a Morse potential, and
bond-angle terms for H–C–H, H–N–H, C–N–H and N–
C–H. The total energy from these potentials was added
to χ2 in the RMC algorithm.
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B. Setting up the initial configurations

The starting configurations were generated using the
code RMCcreate (also know as data2config) [10]. The in-
put for this is a trial crystal structure, usually extracted
from Rietveld refinement, of the correct unit cell parame-
ters for the given temperature. The method then gener-
ates a starting configuration as a supercell of the starting
configuration. Typically we chose supercells with edge
lengths as close to 50 Å as possible, achieving this for
supercell sizes of 6× 4× 6 for the orthorhombic phase,
6× 6× 4 for the tetragonal phase, and 8× 8× 8 for the
cubic phase.

Only the orthorhombic phase has ordered atom posi-
tions, so for the other two phases we created an ordered
orientation of the MA molecular ions, and a utility within
RMCcreate was used to give random orientations to each
of these molecular ions.

C. Examples of the RMC results

Representative datasets to illustrate the quality of the
RMC agreements are shown in Figure S1. We show, for
each phase, a comparison of the RMC calculation with
each of the three data sets used.
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(c) Bragg profile at 400 K
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(f) Bragg profile at 170 K
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(i) Bragg profile at 10 K

FIG. S1: The RMC fits to the experimental data used, including D(r), i(Q) and I(t) for the high-temperature,
room-temperature and low-temperature phases. The Bragg-scattering data have been transformed to d-spacing from

time-of-flight.
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S3. BOND ORIENTATIONAL DISTRIBUTION
FUNCTION

A. Cubic symmetry

The orientational order/disorder of the MA cations
can be described quantitatively by the bond distribution
function P(Ω), where Ω is defined as the pair of polar
angles (θ, φ) with θ as the zenith angle and φ as the az-
imuthal angle (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π). P(Ω) describes
the probability of a C–N bond lying within a given ele-
ment of solid angle dΩ = sin θ dθ dφ, normalised such
that ∫∫

P(Ω) sin θ dθ dφ = 1/4π (S8)

For molecules lying on sites of cubic symmetry m3m,
it is convenient to expand P(Ω) in terms of the Kubic
harmonic functions [11, 12]:

P(Ω) =
1

4π

∞

∑
`=0

c`K`(Ω) (S9)

where

K0 = 1 (S10a)

K4 =

√
21
4

(5Q− 3) (S10b)

K6 =

√
13

8
√

2
(462S + 21Q− 17) (S10c)

K8 =

√
561
32

(65Q2 − 208S− 94Q + 33) (S10d)

K10 =

√
455

64
√

2
(7106QS + 187Q2 − 3190S− 264Q + 85)

(S10e)

Here Q = x4 + y4 + z4 and S = x2y2z2, where x =
sin θ cos φ, y = sin θ sin φ and z = cos θ. For symmetry
reasons terms with odd values of ` are absent, as also is
the term for ` = 2.

Because the functions K` are orthonormal, it follows
that in the analysis of atomic configurations we can ob-
tain the coefficients in equation S9 directly as c` = 〈K`〉,
where the average is taken over all bonds in the RMC
configuration, and over several independent configura-
tions.

TABLE S1: c parameters for the high-temperature cubic
phase.

` 335 K 350 K 375 K 400 K

0 0.28209 0.28209 0.28209 0.28209
4 -0.00903 -0.02291 -0.01607 -0.02791
6 0.00197 -0.01405 -0.02612 -0.01320
8 -0.00384 -0.01247 -0.02809 0.00710
10 0.00205 0.01152 0.02389 0.00355
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FIG. S2: The orientation distribution function P(Ω) of C–N bonds in the cubic phase of MAPbI3 at 335 K obtained
directly from the atomic configurations (black circles), with the corresponding function calculated using the derived
Kubic harmonics (black lines) as described in the text. The value for completely random orientation distribution is
1/4 ' 0.08. The inset shows the three-dimensional representation of the C–N orientational distribution function

calculated from the Kubic harmonic functions.

FIG. S3: The orientation distribution function P(Ω) of C–N bonds in the cubic phase of MAPbI3 at 350 K obtained
directly from the atomic configurations (black circles), with the corresponding function calculated using the derived
Kubic harmonics (black lines) as described in the text. The value for completely random orientation distribution is
1/4 ' 0.08. The inset shows the three-dimensional representation of the C–N orientational distribution function

calculated from the Kubic harmonic functions.
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FIG. S4: The orientation distribution function P(Ω) of C–N bonds in the cubic phase of MAPbI3 at 375 K obtained
directly from the atomic configurations (black circles), with the corresponding function calculated using the derived
Kubic harmonics (black lines) as described in the text. The value for completely random orientation distribution is
1/4 ' 0.08. The inset shows the three-dimensional representation of the C–N orientational distribution function

calculated from the Kubic harmonic functions.
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TABLE S2: c parameters for the
intermediate-temperature tetragonal phase.

` m comb 170 K 293 K 300 K

0 0 c 0.28209 0.28209 0.28209
2 0 c -0.08470 -0.03107 -0.03537
3 2 s 0.01523 -0.00105 0.00528
4 0 c -0.03402 -0.00393 -0.00363
4 4 c -0.07809 -0.03239 -0.02306
5 2 s -0.00548 0.00156 0.00210
6 0 c 0.05217 0.02584 0.03198
6 4 c -0.09502 -0.03996 -0.03275
7 2 s -0.00814 0.00797 -0.00059
7 6 s 0.00085 -0.02033 0.00834
8 0 c -0.02051 -0.01874 -0.01585
8 4 c 0.03293 -0.00742 0.00206
8 8 c 0.00757 -0.01216 -0.00623
9 2 s 0.01377 0.00538 0.00453
9 6 s 0.00047 -0.00135 0.00217
10 0 c -0.00046 0.01066 0.01834
10 4 c 0.00852 0.01391 -0.01594
10 8 c 0.04847 0.00634

B. General symmetry

The main text has described the method to fit the C–N
bond orientational distribution function using combina-
tions of spherical harmonics to create real functions. The
fitted coefficients for the tetragonal phase are given in
Table S2, and for the orthorhombic phase in Table S3.
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TABLE S3: c parameters for the low-temperature orthorhombic phase.

` m comb 10 K 100 K 155 K ` m comb 10 K 100 K 155 K

0 0 c 0.28209 0.28209 0.28209 10 10 c -0.25692 -0.11687 -0.06882
1 1 c -0.00217 -0.01503 -0.01176 10 2 s -0.00485 0.01918 0.02077
1 1 s 0.00164 -0.00440 -0.00362 10 4 s -0.02828 0.00772 -0.01191
2 0 c -0.30500 -0.29290 -0.28361 10 6 s -0.05460 -0.04512 -0.07002
2 2 c -0.25261 -0.25484 -0.24697 10 8 s -0.04080 -0.07454 -0.06840
2 2 s 0.02407 0.03781 0.05388 10 10 s 0.04650 0.02157 0.07271
3 1 c 0.00174 0.01733 0.01090 11 1 c -0.00328 0.02019 0.00246
3 1 s -0.00153 0.00213 0.01314 11 1 s -0.00275 -0.01399 0.02452
3 3 c 0.00125 0.01095 0.00713 11 3 c -0.00684 0.03035 -0.00105
3 3 s -0.00826 0.02671 0.01586 11 3 s 0.00061 -0.00295 0.00923
4 0 c 0.28404 0.24943 0.22384 11 5 c -0.00384 -0.00410 -0.01766
4 2 c 0.20281 0.18867 0.17218 11 5 s 0.00419 0.01069 -0.00687
4 4 c -0.29308 -0.23757 -0.22295 11 7 c 0.00274 -0.04080 -0.02985
4 2 s -0.01666 -0.02843 -0.04155 11 7 s 0.00907 0.01997 -0.00346
4 4 s 0.03422 0.03147 0.07528 11 9 c 0.00600 -0.02703 -0.01324
5 1 c -0.00102 -0.02038 -0.00932 11 9 s 0.01213 0.01448 -0.00418
5 1 s 0.00149 0.00072 -0.02428 11 11 c -0.00458 0.04568 0.03521
5 3 c 0.00008 -0.01959 -0.00561 11 11 s -0.00505 -0.00213 -0.00851
5 3 s 0.00481 -0.01570 -0.01102 12 0 c 0.14222 0.06051 0.03216
5 5 c 0.00658 0.05016 0.04337 12 2 c 0.09789 0.04489 0.01714
5 5 s -0.00372 -0.02134 -0.01617 12 4 c -0.11122 -0.03980 -0.02794
6 0 c -0.25245 -0.19493 -0.15567 12 6 c -0.21304 -0.08734 -0.03692
6 2 c -0.17559 -0.14481 -0.11947 12 8 c -0.08658 -0.03933 -0.01852
6 4 c 0.21093 0.14294 0.11457 12 10 c 0.15861 0.05912 0.01970
6 6 c 0.50489 0.39681 0.32549 12 12 c 0.29714 0.12620 0.02628
6 2 s 0.01015 0.02298 0.03401 12 2 s 0.01148 -0.01895 -0.01486
6 4 s -0.02869 -0.01707 -0.04150 12 4 s 0.02825 -0.01764 0.00448
6 6 s -0.11866 -0.15121 -0.22750 12 6 s 0.03781 0.02190 0.03919
7 1 c -0.00020 0.02174 0.00639 12 8 s 0.01776 0.05420 0.03550
7 1 s -0.00151 -0.00432 0.03082 12 10 s -0.03863 0.00850 -0.02553
7 3 c -0.00196 0.02638 0.00238 12 12 s -0.10176 -0.10875 -0.11571
7 3 s -0.00256 0.00774 0.00972 13 1 c 0.00412 -0.01794 -0.00233
7 5 c -0.00491 -0.03053 -0.03142 13 1 s 0.00464 0.01724 -0.01797
7 5 s 0.00316 0.01543 0.00484 13 3 c 0.00839 -0.02813 -0.00081
7 7 c -0.00523 -0.08293 -0.06441 13 3 s -0.00172 0.00555 -0.00769
7 7 s 0.02929 0.00316 0.01176 13 5 c 0.00394 -0.00324 0.01053
8 0 c 0.21558 0.14194 0.09846 13 5 s -0.00606 -0.00900 0.00775
8 2 c 0.14872 0.10508 0.07445 13 7 c -0.00422 0.02315 0.01895
8 4 c -0.17207 -0.09589 -0.06388 13 7 s -0.00712 -0.02136 0.01164
8 6 c -0.34327 -0.21958 -0.15939 13 9 c -0.00600 0.02254 0.00747
8 8 c -0.16209 -0.13809 -0.07838 13 9 s -0.00618 -0.01866 0.00693
8 2 s -0.00273 -0.01982 -0.02709 13 11 c 0.00299 -0.02342 -0.01873
8 4 s 0.02821 0.00481 0.02373 13 11 s 0.00363 -0.00267 0.02790
8 6 s 0.07624 0.08154 0.12034 13 13 c 0.02534 -0.06929 -0.03845
8 8 s 0.08504 0.13041 0.13453 13 13 s 0.03113 0.01355 0.02373
9 1 c 0.00178 -0.02144 -0.00363 14 0 c -0.11128 -0.03375 -0.01404
9 1 s 0.00180 0.00900 -0.03017 14 2 c -0.07688 -0.02521 -0.00312
9 3 c 0.00442 -0.02982 0.00073 14 4 c 0.08611 0.02177 0.02045
9 3 s 0.00077 -0.00132 -0.00962 14 6 c 0.16546 0.05057 0.01380
9 5 c 0.00421 0.01600 0.02476 14 8 c 0.06819 0.02063 -0.00440
9 5 s -0.00333 -0.01235 0.00266 14 10 c -0.11469 -0.04534 -0.00572
9 7 c 0.00036 0.06087 0.04424 14 12 c -0.18613 -0.05805 -0.01600
9 7 s -0.01473 -0.01382 -0.00845 14 14 c -0.03869 -0.02067 0.00486
9 9 c -0.00376 0.03640 0.01889 14 2 s -0.01627 0.01662 0.00966
9 9 s -0.02846 -0.00333 -0.00819 14 4 s -0.02796 0.02234 -0.00073

10 0 c -0.17771 -0.09657 -0.05845 14 6 s -0.02520 -0.00745 -0.02061
10 2 c -0.12227 -0.07144 -0.04027 14 8 s -0.00211 -0.04255 -0.01747
10 4 c 0.13986 0.06365 0.03905 14 10 s 0.03493 -0.02386 0.01186
10 6 c 0.26974 0.13913 0.08170 14 12 s 0.05895 0.04047 0.04298
10 8 c 0.11020 0.07200 0.04956 14 14 s 0.02293 0.07567 0.02698
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