Supporting information

Coupling PtZn intermetallic and atomically dispersed cobalt towards efficient and stable oxygen reduction reaction catalysts

Lei Zhao ^a, Xueqiang Qi ^{b,c,*}, Tingting Yang ^c, Pei Xiong ^a, Xiaobin Niu ^a, Jinxia Jiang ^d, Qian Xue ^c, Le Yu ^e, Jun Song Chen ^{a,f,g}, Andreu Cabot ^{b,h,*}, and Rui Wu ^{a,*}

^a School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.

^b Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona 08930, Spain.

^c College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.

^d Chongqing Medical and Pharmaceutical College, Chongqing, 400020, China

^e State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

^f Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, China

^g Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China.

^h ICREA, Pg. Lluis Companys 23, Barcelona 08010, Catalonia, Spain

* Corresponding Authors

Xueqiang Qi, Email: xqqi@cqut.edu.cn; Andreu Cabot, Email: acabot@irec.cat; Rui Wu,

Email: ruiwu0904@uestc.edu.cn

Computational details

Spin-polarized DFT calculations were performed with the Vienna Ab initio Simulation Package (VASP).^{1,2} The Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) was adopted to describe electronic exchange-correlation energy.³ The ionic cores were described with the projector augmented wave (PAW) method. In all the calculations, the vacuum was established at 15 Å to create a true crystal surface. A cutoff energy of 400 eV was provided and a $3 \times 3 \times 1$ Monkhorst Pack k-point sampling was chosen for the well-converged energy values. Geometry optimizations were pursued until the force on each atom falls below the convergence criterion of 0.02 eV/Å and energies converged within 10^{-5} eV.

Fig. S1 (a) TEM image of PtZn-NC and (b) corresponding size distribution histogram of PtZn NPs.

Fig. S2 Raman spectra of PtZn-CoNC, PtZn-NC and CoNC.

Fig. S3 N₂ adsorption/desorption isotherms and pore size distribution plots of (a, b) PtZn-CoNC, (c, d) PtZn-NC and (e, f) CoNC.

Fig. S4 XPS survey spectra of PtZn-CoNC, PtZn-NC, CoNC and Pt/C.

Fig. S5 Zn 2p XPS spectra of (a) PtZn-CoNC and (b) PtZn-NC.

Fig. S6 Fitted Pt EXAFS spectrum of PtZn-CoNC.

Fig. S7 CV curves for PtZn-CoNC, PtZn-NC and commercial Pt/C catalysts.

Fig. S8 CO stripping voltammograms of (a) PtZn-CoNC, (b) PtZn-NC and (c) Pt/C.

Fig. S9 Half-wave potentials for PtZn-CoNC, PtZn-NC and Pt/C.

Fig. S10 Mass activities and specific activities for PtZn-CoNC, PtZn-NC and Pt/C at 0.85 V vs. RHE.

Fig. S11 Electron transfer number and H₂O₂ yield for PtZn-CoNC, PtZn-NC, Pt/C and CoNC obtained from RRDE measurements.

Fig. S12 Polarization and power density curves of H_2 - O_2 fuel cells based on PtZn-CoNC and commercial Pt/C cathode catalysts with a cathode Pt loading of 0.05 mg cm_{Pt}⁻².

Fig. S13 Mass normalized H₂-O₂ fuel cell performance of PtZn-CoNC.

Fig. S14 CV curves and CO stripping voltammograms before and after 30,000 cycles of (a, b) PtZn-CoNC, (c, d) PtZn-NC and (e, f) Pt/C.

Fig. S15 TEM images and corresponding Pt size distributions of (a, b) fresh Pt/C catalyst and (c, d) aged Pt/C catalyst after 30,000 cycles.

Fig. S16 (a) TEM image and (b) corresponding PtZn particle size distribution of PtZn-NC after 30,000 potential cycles.

Fig. S17 (a) TEM image and (b) corresponding PtZn particle size distribution of PtZn-CoNC after 30,000 potential cycles.

Fig. S18 HR-TEM images of PtZn-CoNC after 30,000 potential cycles.

Fig. S19 TEM images and corresponding EDS analysis of PtZn-CoNC: (a) initial and (b) after the 30k cycles.

Fig. S20 Differential charge diagrams of (a) PtZn/CoN₄, (b) PtZn/NC and (c) CoN₄ at top view.

Fig. S21 Projected density of states (PDOS) diagrams of Pt in Pt/CoN₄ and PtZn/CoN₄.

Fig. S22 Configurations of the adsorbed intermediates on $PtZn/CoN_4$: (a) bare surface (b) *OOH, (c) *O, and (d) *OH.

Fig. S23 Configurations of the adsorbed intermediates on PtZn/NC: (a) bare surface (b) *OOH, (c) *O, and (d) *OH.

Fig. S24 Configurations of the adsorbed intermediates on CoN₄: (a) bare surface (b) *OOH, (c) *O, and (d) *OH.

Sample	PtZn-CoNC	PtZn-NC	CoNC
BET (m ² g ⁻¹)	1157.6	1054.2	920.8
Average pore size (nm)	6.94	5.83	7.79
Total pore volume (cm ³ g ⁻¹)	4.05	5.72	3.58

 Table S1 Pore parameters for PtZn-CoNC, PtZn-NC and CoNC.

 Table S2 Elemental composition determined by XPS for different samples.

	C / at%	N / at%	Pt / at%	Zn / at%	Co / at%
PtZn-CoNC	93.39	5.64	0.46	0.34	0.18
PtZn-NC	95.09	4.22	0.43	0.26	
CoNC	93.99	5.89			0.12
Pt/C	99.16		0.84		

Table S3. The bind energies of individual peak deconvolution of Pt 4f spectra and corresponding relative concentration of Pt species in PtZn-CoNC, PtZn-NC and Pt/C samples.

Pt 4f _{7/2}				Pt 4f _{5/2}			
Pt^{0}		Pt^{2+}		$\mathbf{P}\mathbf{t}^{0}$		Pt^{2+}	
Binding energy	Content	Binding energy	content	Binding energy	content	Binding energy	content
71.4 eV	30.5%	72 5 eV	197%	74 9 eV	30.5%	76.0 eV	20.8%
/1.101	- C V 50.570	12.3 01	19.7 70	71.907	50.570	/ 0.0 0 1	20.070
71.5 eV	29.9%	72.6 eV	18.7%	75.0 eV	32.0%	76.2 eV	18.7%
71.9 eV	25.2%	72.8 eV	26.0%	75.3 eV	26.9%	76.4 eV	21.8%
	P Binding energy 71.4 eV 71.5 eV 71.9 eV	Pt 4 Pt ⁰ Binding energy Content 71.4 eV 30.5% 71.5 eV 29.9% 71.9 eV 25.2%	Pt 4f _{7/2} Pt ⁰ Pt Binding energy Content Binding energy 71.4 eV 30.5% 72.5 eV 71.5 eV 29.9% 72.6 eV 71.9 eV 25.2% 72.8 eV	Pt 4f _{7/2} Pt ⁰ Pt ²⁺ Binding energy Content Binding energy content 71.4 eV 30.5% 72.5 eV 19.7 % 71.5 eV 29.9% 72.6 eV 18.7% 71.9 eV 25.2% 72.8 eV 26.0%	Pt 4f _{7/2} Pt ⁰ Pt ²⁺ P Binding energy Content Binding energy content Binding energy 71.4 eV 30.5% 72.5 eV 19.7 % 74.9 eV 71.5 eV 29.9% 72.6 eV 18.7% 75.0 eV 71.9 eV 25.2% 72.8 eV 26.0% 75.3 eV	Pt $4f_{7/2}$ Pt 4 Pt ⁰ Pt ²⁺ Pt ⁰ Binding energy Content Binding energy content Binding energy content 71.4 eV 30.5% 72.5 eV 19.7% 74.9 eV 30.5% 71.5 eV 29.9% 72.6 eV 18.7% 75.0 eV 32.0% 71.9 eV 25.2% 72.8 eV 26.0% 75.3 eV 26.9%	Pt $4f_{7/2}$ Pt $4f_{5/2}$ Pt ⁰ Pt ²⁺ Pt ⁰ Pt Binding energy Content Binding energy content Binding energy content Binding energy 71.4 eV 30.5% 72.5 eV 19.7% 74.9 eV 30.5% 76.0 eV 71.5 eV 29.9% 72.6 eV 18.7% 75.0 eV 32.0% 76.2 eV 71.9 eV 25.2% 72.8 eV 26.0% 75.3 eV 26.9% 76.4 eV

Sample	Path	Ν	R (Å)	$\sigma^2 (\times 10^{-3}\text{\AA}^2)$	$\Delta E_0 (\mathrm{eV})$	<i>R</i> , %
	Pt-Pt1	12	2.75±0.01	5±1		0.43
Pt foil ^[a] –	Pt-Pt2	6	3.88±0.02	8±2	7.6±0.3	
PtZn ^[b]	Pt-O	0.6±0.2	1.86±0.06	2±1		
	Pt-Zn	2.6±0.6	2.56±0.02	2±1	-3.0±2.3	0.77
	Pt-Pt	4.1±1.0	2.61±0.03	4±1		

Table S4 Structural parameters extracted from the EXAFS fitting of PtZn-CoNC.

[a]: *k* range: 3-14.3 (Å⁻¹); *R* range: 1-3.6 Å; [b]: *k* range: 3-12 (Å⁻¹); *R* range: 1-3.2 Å; $S_0^2 = 0.83$, S_0^2 was determined from Pt foil. The bold numbers were set as fixed coordination numbers.

Catalyst	Cathode Loading (mg _{Pt} cm ⁻²)	Peak Power Density (mW cm ⁻²)	Peak Power Density (W mg _{Pt} ⁻¹)	MA ^a (A mg _{Pt} ⁻¹)	References
PtZn-CoNC	0.05	776	15.5	14.60 ^b	This work
PtCo@NGNS	0.1	860	8.6	N/A	[4]
Pt1Co1-MC@Pt/C	0.2	2300	11.5	0.46	[5]
PtCo/Co-N-C	0.05	700	12.0	10.52°	[6]
PtCoNi@NCNTs	0.066	700	10.2	8.11 ^b	[7]
PtA@FeSA-N-C	0.13	1.31	10.1	0.45	[8]
PtNiCo/NC	0.12	1070	9.0	N/A	[9]
oh-PtNi(Mo)/C	0.1	1170	11.7	0.45	[10]

Table S5 Comparison of the H_2 - O_2 fuel cell performance for recently reported Pt alloy electrocatalysts.

MA^a: Single cell mass activity based on the cathodic Pt-loading at a voltage of 0.9 V, MA^b: at a voltage of 0.7 V and MA^c: at a voltage of 0.6 V.

N/A: not applicable

Catalyst	E _{1/2} ^a (V)	MA ^b (A mg _{Pt} ⁻¹) at 0.9 V	Loss of E _{1/2} (mV) after ADTs ^c	Loss of MA after ADTs (%)	References
PtZn-CoNC	0.910	0.44	5 (30k)	12.8 (30k)	This work
Pt1Co1- IMC@Pt/C-2.5	N/A ^d	0.53	10 (30k)	23.4 (30k)	[5]
O-PtCo ₃ @HNCS	0.909	0.54	10 (20k)	7.4 (20k)	[11]
PtNi ₃ @OMC-A	0.907	2.11 (0.85 V)	10 (10k)	20.8 (10k)	[12]
Pt-Co ND-NF	0.95	0.939	18 (5k)	39.7 (5k)	[13]
Pt/ZnFe-N-C	0.790	0.20 (0.85 V)	1 (2k)	11.3 (2k)	[14]
PtCo/Zn ₁₁ Co	0.922	0.46	N/A	~20 (60k)	[15]
O-Pt-Fe@NC/C	N/A	0.53	4 (10k)	14.1 (10k)	[16]
Pt-Co NF	N/A	0.4 (0.95 V)	N/A	15 (5k)	[17]
10%-PtZn@NC- 800	0.912	0.283	1 (5k)	N/A	[18]

 Table S6 Comparison of the ORR performance for recently reported Pt electrocatalysts.

 $E_{1/2}^{a}$: half-wave potential;

MA^b: mass activity;

ADTs^c: accelerated durability tests

N/A^d: not applicable.

Reference

- 1. G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558-561.
- 2. G. Kresse and J. Furthmiiller, Comput. Mater. Sci., 1996, 6, 15-50.
- 3. B. Hammer, L. B. Hansen and J. K. No"rskov, Phys. Rev. B 1999, 59, 7413-7421.
- S. Zaman, Y. Q. Su, C. L. Dong, R. Qi, L. Huang, Y. Qin, Y. C. Huang, F. M. Li, B. You, W. Guo, Q. Li, S. Ding and B. Y. Xia, *Angew. Chem. Int. Ed.*, 2022, 61, e202115835.
- Q. Cheng, S. Yang, C. Fu, L. Zou, Z. Zou, Z. Jiang, J. Zhang and H. Yang, *Energy Environ. Sci.*, 2022, 15, 278–286.
- P. Guo, Y. Xia, B. Liu, M. Ma, L. Shen, Y. Dai, Z. Zhang, Z. Zhao, Y. Zhang, L. Zhao and Z. Wang, ACS Appl Mater Interfaces, 2022, 14, 53819–53827.
- S. Zaman, X. Tian, Y.-Q. Su, W. Cai, Y. Yan, R. Qi, A. I. Douka, S. Chen, B. You, H. Liu, S. Ding, X. Guo and B. Y. Xia, *Sci. Bull.*, 2021, 66, 2207–2216.
- X. Ao, W. Zhang, B. Zhao, Y. Ding, G. Nam, L. Soule, A. Abdelhafiz, C. Wang and M. Liu, *Energy Environ.* Sci., 2020, 13, 3032–3040.
- S. Hanif, X. Shi, N. Iqbal, T. Noor, R. Anwar and A. M. Kannan, *Appl. Catal. B: Environ.*, 2019, 258, 117947.
- F. Dionigi, C. C. Weber, M. Primbs, M. Gocyla, A. M. Bonastre, C. Spori, H. Schmies, E. Hornberger, S. Kuhl, J. Drnec, M. Heggen, J. Sharman, R. E. Dunin-Borkowski and P. Strasser, *Nano Lett.*, 2019, **19**, 6876–6885.
- 11. Y. Hu, X. Guo, T. Shen, Y. Zhu and D. Wang, ACS Catal., 2022, 12, 5380-5387.
- 12. K. Wang, Y. Wang, S. Geng, Y. Wang and S. Song, Adv. Funct. Mater., 2022, 32, 2113399.
- 13. X. Zhu, L. Huang, M. Wei, P. Tsiakaras and P. K. Shen, Appl. Catal. B: Environ., 2021, 281, 119460.
- 14. J. Li, Q. Zhou, M. Yue, S. Chen, J. Deng, X. Ping, Y. Li, J. Li, Q. Liao, M. Shao and Z. Wei, *Appl. Catal. B: Environ.*, 2021, 284, 119728.
- 15. Y. Xiong, Y. Yang, F. J. DiSalvo and H. D. Abruna, ACS Nano, 2020, 14, 13069–13080.
- 16. Y. Hu, T. Shen, X. Zhao, J. Zhang, Y. Lu, J. Shen, S. Lu, Z. Tu, H. L. Xin and D. Wang, *Appl. Catal. B: Environ.*, 2020, **279**, 119370.
- S. Chen, M. Li, M. Gao, J. Jin, M. A. van Spronsen, M. B. Salmeron and P. Yang, *Nano Lett.*, 2020, 20, 1974–1979.
- 18. Y. Xue, H. Li, X. Ye, S. Yang, Z. Zheng, X. Han, X. Zhang, L. Chen, Z. Xie, Q. Kuang and L. Zheng, *Nano Res.*, 2019, **12**, 2490–2497.