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Fig. S1 The polarization switching behavior of the doped AN sample with 94% PE phase. E↑and E↓represent the 
stages of increasing electric field and decreasing electric field, respectively.

Fig. S1 indicates the polarization switching behavior of the doped AN sample with 94% PE phase. 

Upon increasing the electric field, the lamellar AFE domains gradually switch to the [001] direction 

and the structure transforms to FE state at 700 kV cm-1. The FE state is maintained until the electric 

field decreases to 350 kV cm-1. After that, it transfers back to local AFE domains.

Fig. S2 Room-temperature P-E loops of AN-0.12Bi ceramic measured at various electric fields.
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Fig. S3 (a)-(b)Temperature, (c)-(d)frequency and (e)-(h) cycling stability of AN-0.12Bi ceramic with (a)(c)(e)(g) P-
E loops and (b)(d)(f)(h) corresponding Wrec and .
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Fig. S4 The discharge (a) current-time curves and (b) Wd under different electric fields of the AN-0.12Bi ceramic.

Fig. S5 XRD patterns of AN-xBi ceramics at room temperature.
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Fig. S6 Temperature dependence of dielectric constant and dielectric loss measured at various frequencies during 
the heating process from -100 to 450 oC. (a) AN-0.00Bi; (b) AN-0.02Bi; (c) AN-0.04Bi; (d) AN-0.06Bi; (e) AN-
0.08Bi; (f) AN-0.10Bi; (g) AN-0.12Bi and (h) AN-0.14Bi ceramics.
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Fig. S7 Overview bright-field TEM image of AN-0.12Bi ceramic.
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Fig. S8 The electric-field-induced strain of AN-0.00Bi and AN-0.12Bi ceramics.
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Fig. S9 SEM images of AN-xBi ceramics: (a) x=0.00, (b) x=0.02, (c) x=0.04, (d) x=0.06, (e) x=0.08, (f) x=0.10, (g) 
x=0.12 and (h) x=0.14.

The strain, which would cause electromechanical breakdown, may be also responsible for the sharply 

changed Eb in AN-xBi ceramics. As there is a quadratic relationship between strain and polarization, 

the strain jump occurs over very small electric field range and thus increases the risk of mechanical 

failure in dielectric materials with square-shaped P-E loops, while the strain normally develops 

slowly over a wide external electric field range in the ones with slim-slanted hysteresis loops (J. Appl. 

Phys. 2016, 119, 024104). This should be evident in present work. Take two representative samples, 

revealing nearly square-shaped P-E loops (i.e., AN-0.00Bi) and slim-slanted P-E loops (i.e., AN-

0.12Bi), for example. The electric-field-induced strain of AN-0.00Bi and AN-0.12Bi displayed giant 

difference at the same electric field of 165 kV cm-1 (Fig. S8). Though this trend does not fit the 

x=0.14 sample, the decreased Eb here is attributed to a porous microstructure, as shown in Fig. S9.
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Table S1 The comparison on the energy storage properties between our present work and representative lead-based AFE ceramics

Energy storage properties 
obtained via P-E loops

Overdamped discharge 
energy density 

Sample

Wrec (J cm-3)  (%)
Electric 

filed
(kV cm-1)

Wd (J cm-3)
Electric 

filed 
(kV cm-1)

Preparation 
method Reference

0.10 wt% MnO2-
Ag0.64Bi0.12NbO3

(AN-0.12Bi)
9.0 90 650 8.0 600 Solid-state 

reaction This work

0.99(Pb0.97La0.02)
(Zr0.6Sn0.4)O3-0.01AgNbO3

10.81 85.05 400 8.72 360 Solid-state 
reaction

J. Mater. Chem. 
A 2021, 9, 11291

Pb0.88La0.04Sr0.06((Zr0.6Sn0.4)0.8

4Ti0.16)O3
1.52 93.3 129 1.21 129 Solid-state 

reaction
Ceram. Int. 2016, 

42, 12875

(Pb0.915Ba0.04La0.03)(Zr0.65Sn0.3

Ti0.05)O3
4.44 88.8 170 4.22 170 Solid-state 

reaction
Ceram. Int. 2020, 

46, 18106

(Pb0.965Sr0.02Bi0.01)(Zr0.6Sn0.4)
O3

11.28 85.54 350 7.6 350 Solid-state 
reaction

Chem. Eng. J. 
2022, 434, 

134660
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(Pb0.97La0.02)(Zr0.8Sn0.145Ti0.05

5)O3
4.38 70 ~250 \ \ Solid-state 

reaction
Ceram. Int. 2017, 

43, 11428

(Pb0.955La0.03)(Zr0.5Sn0.43Ti0.07

)O3
4.2 78 ~200 \ \ Solid-state 

reaction
Ceram. Int. 2019, 

45, 11375

0.92Pb(Tm1/2Nb1/2)O3-
0.08Pb(Mg1/3Nb2/3)O3

3.12 \ ~310 \ \ Solid-state 
reaction

J. Eur. Ceram. 
Soc. 2017, 37, 

3329

(Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3

Ti0.05)O3-0.005Mn2O3
2.64 73 308 \ \ Solid-state 

reaction

J. Am. Ceram. 
Soc. 2019, 102, 

1912

Pb0.98La0.02(Hf0.45Sn0.55)0.995O
3

7.63 94 380 \ \ Rolling 
process

J. Mater. Chem. C 
2020, 8, 17016

Pb0.94La0.02Sr0.04(Zr0.9Sn0.1)0.99

5
11.18 82.2 395 8.6 400 Tape-

casting
J. Mater. Chem. 

A 2019, 7, 11858

Pb0.95Ca0.02La0.02(Zr0.93Sn0.05T
i0.02)O3

14.5 77.1 448 11.6 448 Tape-
casting

J. Eur. Ceram. 
Soc. 2021, 41, 

4138

(Pb0.96La0.04)(Zr0.99Ti0.01)O3 11.38 79.2 395 6.2 350 Tape-
casting

ACS Appl. 
Energy Mater. 
2021, 4, 4897
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(Pb0.94Sm0.04)(Zr0.6Sn0.4)O3 11.2 85.1 400 9.7 410 Tape-
casting

Chem. Eng. J. 
2022, 447, 

137367

(Pb0.88Cd0.03La0.06)(Zr0.6Sn0.4)
O3

19.3 91 870 15.35 780 Tape-
casting

Adv. Mater. 2022, 
34, 2201333

Pb0.98La0.02(Zr0.7Sn0.3)0.995O3 12.6 80 560 3.7 300 MLCC
Inorg. Chem. 

Front. 2020, 7, 
756


