Supporting Information for

High-Throughput Computational Discovery of 3,218 Ultralow Thermal Conductivity and Dynamically Stable Materials by Dual Machine Learning Models

Joshua Ojih,¹ Chen Shen,² Alejandro Rodriguez,¹ Uche Onyekpe,³ Hongbin Zhang,^{2,*} Kamal Choudhary,⁴

and Ming Hu^{1,*}

¹Department of Mechanical Engineering, University of South Carolina, SC 29208, USA

²Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Germany

³Centre for Computational Sciences and Mathematical Modelling, Coventry University, Priory Road,

Coventry, CV1 5FB, UK

⁴Materials Science and Engineering Division, National Institute of Standards and Technology,

Gaithersburg, MD 20899, USA

^{*} Authors to whom all correspondence should be addressed. E-Mail: <u>hzhang@tmm.tu-darmstadt.de</u> (H.Z.); <u>hu@sc.edu</u> (M.H.)

Figure S1: Overview of the workflow. After training classification model and predicting stable structures (Step 1), step 2 is to train and screen the stable structures for low LTC. Step 3 and step 4 are recommendation and verification of low LTC structures, respectively.

Figure S2: (a) Outliers within the independent variables for the machine learning classification models. Panel (b) explains the boxplot, showing the outliers.

Figure S3: Phonon dispersions of selected structures (a) Br₅Cs₃Zn, (b) Cl₆PtRb₂, (c) AuBr₂ClCs, and (d) Br₆Cs₂Pt along high symmetry paths. The non-negative phonon dispersions prove the thermodynamic stability of the structures. The low-lying acoustic phonon frequencies are also clearly seen, which is partially responsible for their ultralow lattice thermal conductivity.

Figure S4: Testing results of P₃ parameter for the three GNN predictive models for 808 structures: (a) OGCNN, (b) deeperGATGNN, and (c) ALIGNN.

Figure S5: Testing results of mean squared displacement (MSD) of three GNN predictive models for 808 structures: (a) OGCNN, (b) deeperGATGNN, and (c) ALIGNN.

Figure S6: (a) DFT calculated P₃ parameter versus LTC, (b) ALIGNN model predicted P₃ parameter versus LTC, (c) DFT calculated MSD versus LTC, (b) ALIGNN model predicted MSD versus LTC.