Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting information:

Synergistic multi-selective photocatalysis and real-time optical thermometry of

CsPbBr₃/BiOI/TiO₂@PAN flexible nanofibers

Yanyan Li ^a, Lifan Shen ^{a, b, *}, Edwin Yue Bun Pun ^c, Hai Lin ^{a, c, *}

^a School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P.R.

China

^b College of Microelectronics and Key Laboratory of Optoelectronics Technology, Faculty of

Information Technology, Beijing University of Technology, Beijing, 100124, P.R. China

^c Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter

Waves, City University of Hong Kong, Hong Kong Special Administrative Region, P.R. China

Corresponding Authors

* E-mail: shenlifan@bjut.edu.cn (Lifan Shen)

* E-mail: linhaidlpu@163.com (Hai Lin)

Figure S1. XRD patterns of pristine TiO₂, bare BiOI, initial CsPbBr₃, $B_{0.2}T$ and $C_{0.2}B_{0.2}T$ NCs.

Figure S2. SEM images of $TiO_2@PAN$ (a), BiOI@PAN (b), $CsPbBr_3@PAN$ (c) and $B_{0.2}T@PAN$ (d) nanofibers, at different magnifications.

Figure S3. Elemental mapping and EDS spectrum of $C_{0.2}B_{0.2}T$ NCs (a, b) and $C_{0.2}B_{0.2}T$ @PAN nanofibers (c, d).

Figure S4. TEM images (a-c) and HRTEM image (d) of $C_{0.2}B_{0.2}T@PAN$ nanofibers.

Figure S5. Temperature-dependent spectra of $C_{0.2}B_{0.2}T@PAN$ nanofibers from 303 K to 363 K under

365 nm excitation.

Figure S6. Photocatalytic degradation curves over as-prepared different catalysts for degradation of RhB utilizing simulated sunlight irradiation.

Figure S7. UV-vis spectral change of TCH (a), phenol (c) and BPA (d) over $C_{0.2}B_{0.2}T@PAN$ nanofibers with different irradiation time. (b) The TOC contents of TCH solutions during the elimination reaction over the $C_{0.2}B_{0.2}T@PAN$ nanofibers photocatalyst.

Figure S8. Chemical structure of different forms of RhB.

Figure S9. XPS full spectra of BiOI, CsPbBr₃, TiO₂ and $C_{0.2}B_{0.2}T$.

Gaussia	Lattice constant			
Sample	a/Å	b/Å	c/Å	
CsPbBr ₃	5.83864	5.83864	5.83864	
TiO ₂	4.59035	4.59035	2.95504	
BiOI	3.994 3.994		9.149	

 Table S1. Lattice constant of the prepared samples.

Table S2. Atomic percentage content table of $C_{0.2}B_{0.2}T$ NCs by XPS.

Element	Atomic %
С	48.13
0	26.8
Ti	14.88
Bi	5.02
Ι	1.35
Cs	0.76
Pb	0.40
Br	2.67

Table S3. The BET analysis results of the $C_{0.2}B_{0.2}T$ NCs and $C_{0.2}B_{0.2}T@PAN$ nanofibers.

Sample	Specific surface area	BJH desorption pore volume		
	(m^{2}/g)	(cm^{3}/g)		
C _{0.2} B _{0.2} T NCs	6.88	0.12		
C _{0.2} B _{0.2} T@PAN	11.19	0.13		
nanofibers				

	10 min	20 min	30 min	40 min	50 min
PAN	0.984	0.951	0.908	0.909	0.908
TiO ₂	0.993	0.968	0.927	0.928	0.927
BiOI	0.982	0.946	0.905	0.905	0.906
CsPbBr ₃	0.986	0.954	0.915	0.916	0.915
B _{0.05} T	0.990	0.958	0.917	0.917	0.918
B _{0.1} T	0.981	0.950	0.907	0.907	0.906
B _{0.2} T	0.979	0.948	0.906	0.905	0.905
$B_{0.4}T$	0.989	0.959	0.916	0.915	0.914
$C_{0.05}B_{0.2}T$	0.983	0.951	0.908	0.907	0.907
$C_{0.1}B_{0.2}T$	0.976	0.946	0.902	0.903	0.903
$C_{0.2}B_{0.2}T$	0.972	0.943	0.905	0.905	0.906
$C_{0.4}B_{0.2}T$	0.982	0.952	0.906	0.905	0.904

Table S4. The absorbance of samples with adsorption time of 10, 20, 30, 40 and 50 min under dark condition.

photocatalyst	R ²	k (min ⁻¹)
TiO ₂	0.93375	0.00031
BiOI	0.99915	0.00502
CsPbBr ₃	0.99556	0.00118
B _{0.05} T	0.94163	0.01156
B _{0.1} T	0.94669	0.01192
$B_{0.2}T$	0.96221	0.01277
$B_{0.4}T$	0.93868	0.01149
$C_{0.05}B_{0.2}T$	0.97941	0.02702
$C_{0.1}B_{0.2}T$	0.97516	0.03909
$C_{0.2}B_{0.2}T$	0.95682	0.05181
$C_{0.4}B_{0.2}T$	0.97672	0.03271

Table S5. Goodness of fit (\mathbb{R}^2) and apparent rate constant (k) of RhB degradation.

	C. of pollutant	Irradiation	Time	Catalyst	Removal	Degradation	
Photocatalyst				amount	efficiency	rate constant k	References
	[mg·L ⁺]	light	[min]	$[mg \cdot mL^{-1}]$	[%]	[min ⁻¹]	
CsPbBr ₃ /BiOI/Tio	D_2	T 7'	100	0.5	00 r	0.0510	T 1 · 1
nanofibers	KhB, 5	V1s	100	0.5	99.5	0.0518	This work
CsPbBr ₃ /BiOI/Tio	D ₂	X 7'	100	0.5	077	1	TTI 1
nanofibers	ICH, 10	V 1S	100	0.5	97.7	1	I his work
ZnO@AC@FeC	BPA, 30	UVC	60	0.4	95.6	0.0400	[17]
CsPbBr ₃ /BiOI/Tio	Dp. 10	X 7'	100	0.5	05.2	1	TTI ' 1
nanofibers	BPA, 10	V 1S	100	0.5	95.2	/	I nis work
g-C ₃ N ₄ /Ag ₂ CO ₃ /C	GO TC, 20	Vis	100	0.6	97.6	0.0268	[19]
NH ₄ F/Bi ₂ WO ₆	RhB, 4.8	Vis	110	1	90.0	0.0158	[14]
biochar/2Zn ₃ In ₂ S	6 [/]	T 7'	100	0.1	00 5	0.0120	[(()]
WO ₃	RhB, 30	V18 120	120	0.1	80.5	0.0120	[66]
WO ₃ @TiO ₂ -SiO	PHE, 500	Vis	180	0.5	58.8	0.0047	[11]
g-C ₃ N ₄ /TiO ₂ film	ns MB, 10	Vis	180	/	68.0	/	[10]
TiO ₂ /BiOI/Ag	MO, 15	Solar	180	/	93.3	/	[23]

Table S6. Comparison of photocatalytic degradation for pollutants of the $C_{0.2}B_{0.2}T@PAN$ nanofibers with the reported materials.

.