Supporting Information

Rapidly tuning electrocatalytic activity of perovskite oxides

by plasma treatment

Zhu Sun,*,1,3,5 Weiwei Fan,*,2,4,5 Tianquan Lin^{1,3}

¹School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

²Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

³Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201210, China

⁴Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA

⁵These authors contributed equally to this work.

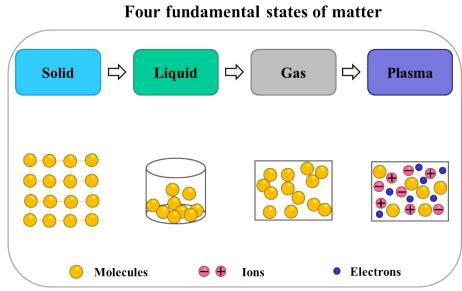
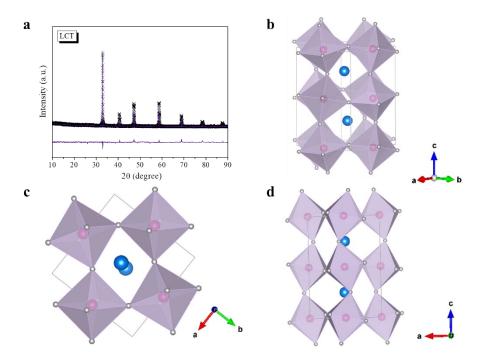



Figure S1. Illustration of the four fundamental states of matter.

Figure S2. **a**, Rietveld refinement XRD profile of the as-synthesized LCT oxide. **b,c,d**, Crystal structural of LCT oxide at different views, where blue spheres denote La/Ca, pink spheres denote Ti, grey spheres denote O.

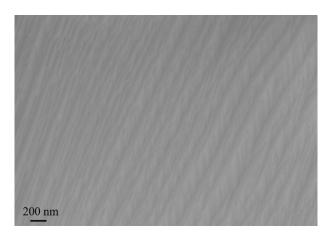
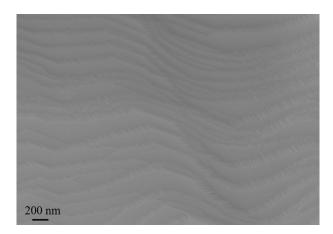
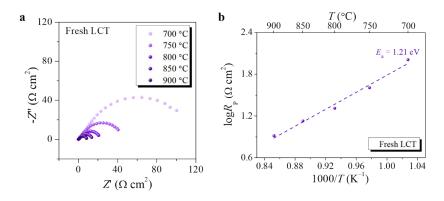
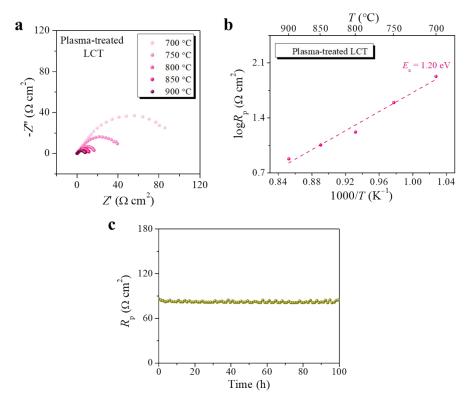


Figure S3. SEM image of the LCTN after thermal treatment at 350 $^\circ$ C for 1h in H₂.

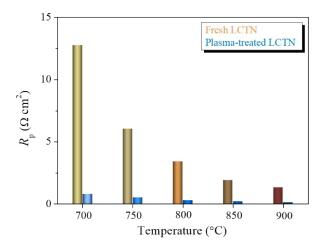

Figure S4. SEM image of the plasma-treated LCT.

Figure S5. **a**, Nyquist plots of the fresh LCT electrode collected from 700 to 900 °C in hydrogen atmosphere under OCV conditions. **b**, Arrhenius plots of R_p for fresh LCT electrode.

Figure S6. **a**, Nyquist plots of the plasma-treated LCT collected from 700 to 900 °C in hydrogen atmosphere under OCV conditions. **b**, Arrhenius plots of R_p of the plasma-treated LCT electrode. **c**, Time dependence of R_p collected at 700 °C in hydrogen atmosphere for the plasma-treated LCT.

Figure S7. Comparison of R_p between the fresh LCTN and the plasma-treated LCTN at different temperatures.

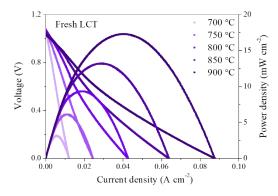


Figure S8. Voltage and power density versus current density for the cell LCT(fresh)|SSZ|LSM-SSZ| measured from 700 to 900 °C using humidified H₂ as fuel and air as oxidant.

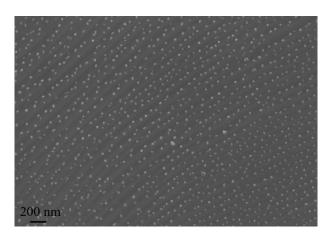


Figure S9. SEM image of the plasma-treated LCTN after stability test.

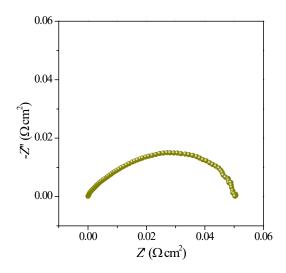


Figure S10. Nyquist plots of the half-cell LSM-SSZ|SSZ|LSM-SSZ collected at 900 °C under OCV condition in air.

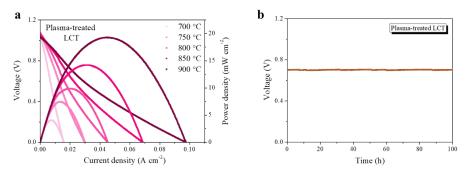


Figure S11. a, Voltage and power density versus current density for the cell LCT(plasma-treated)|SSZ|LSM-SSZ measured from 700 to 900 °C using humidified H₂ as fuel and air as oxidant. b, Cell voltage as a function of testing time for the single cell LCT(plasma-treated)|SSZ|LSM-SSZ at 700 °C.

Activation energy calculation:

Activation energy (E_a) , associating with the electrochemical reaction mechanism including the processes of gas adsorption, dissociation and diffusion, can be calculated by the following equation.

$$\log R_{p} = \log R_{0} - \frac{E_{a}}{2.303RT}$$
(1)

where R_0 is the pre-exponential factor, R is the gas constant (8.314 J mol⁻¹ K⁻¹), T is the absolute temperature (K).

Atoms, sites	Parameters	LCTN
	Space group	Pbnm (62)
	<i>a</i> (Å)	5.4642(4)
	<i>b</i> (Å)	7.7339(4)
	<i>c</i> (Å)	5.4633(7)
	$V(Å^3)$	230.87
	x	0.4670
T 4	у	0.2500
La, 4c	Ζ	0.0072
	Occupancy	0.43
	x	0.4670
C 4	у	0.2500
Ca, 4c	Ζ	0.0072
	Occupancy	0.37
	x	0
T. 4	У	0
Ti, 4a	Z	0
	Occupancy	0.94
	x	0
Ni, 4a	У	0
1 11, 1 <i>a</i>	Z	0
	Occupancy	0.06
	x	0.5107
O1, 4c	y	0.2500
01,40	Z	0.5722
	Occupancy	1
	x	0.2158
	У	0.0346
O1, 8d	Z	0.2826
	Occupancy	1
	$R_{ m wp}$	16.68
	$R_{ m p}$	12.54
	χ^2	4.09

 Table S1. Refined structural parameters for LCTN obtained by fitting of powder XRD data

 at room temperature.

Atoms, sites	Parameters	LCT
	Space group	Pbnm (62)
	<i>a</i> (Å)	5.4587(5)
	<i>b</i> (Å)	7.7261(5)
	<i>c</i> (Å)	5.4562(4)
	$V(Å^3)$	230.11
	x	0.4670
T 4	у	0.2500
La, 4c	Z	0.0072
	Occupancy	0.43
	x	0.4670
Ca Aa	у	0.2500
Ca, 4c	Z	0.0072
	Occupancy	0.37
	x	0
T: 4-	у	0
Ti, 4a	Z	0
	Occupancy	1
	x	0.5107
O1, 4c	У	0.2500
01,40	Z	0.5722
	Occupancy	1
	x	0.2158
	у	0.0346
O1, 8d	Ζ	0.2826
	Occupancy	1
	$R_{ m wp}$	14.83
	$R_{\rm p}$	10.19
	χ^2	3.01

 Table S2. Refined structural parameters for LCT obtained by fitting of powder XRD data at room temperature.

$$M_x O_y + y H_2(g) \xrightarrow{\text{Reduction}} x M^0 + y H_2 O(g)$$
(2)

Table 35 Thermodynamic parameters of reducing the corresponding oxide to metal at 900°C						
Metal oxides	$\Delta H (kJ)$	ΔS (J K ⁻¹)	$\Delta G (kJ)$	Equilibrium constant K		
La ₂ O ₃	1041.806	110.115	912.625	2.301E-41		
CaO	395.428	56.933	328.637	2.324E-15		
TiO ₂	445.167	67.578	365.888	5.098E-17		
NiO	-14.070	30.238	-49.544	1.607E+02		

Table S3 Thermodynamic parameters of reducing the corresponding oxide to metal at 900 °C

		Size	Exsolving time	PPD
Host oxide	Exsolved particle	(nm)	(h)	$(W \text{ cm}^{-2})$
LCTN (this work)	Ni	16	0.25	1.1
$(Pr_{0.4}Sr_{0.6})_3(Fe_{0.85}Mo_{0.15})_2O_7^{-1}$	Co-Fe	80	2	0.5
$(LaSr)_{0.9}Fe_{0.9}Cu_{0.1}O_4^2$	Cu	50	10	0.57
$La_{1.2}Sr_{0.8}Mn_{0.4}Fe_{0.6}O_{4-\delta}{}^3$	Fe ₃ Co ₂	30	20	0.63
$La_{0.95}Fe_{0.80}Ni_{0.05}Ti_{0.15}O_{3}{}^{4}$	Ni	25	5	0.6
$Cu_{1-x}Ni_xFe_2O_4^5$	Cu-Fe-Ni	60	1	0.67
$La_{0.8}Sr_{1.2}Fe_{0.9}Co_{0.1}O_{4\pm\delta}{}^6$	Co	10	20	0.24
$La_{0.7}Sr_{0.3}CrO_{3}{}^{7}$	Ni	20	4	0.31

Table S4 Comparison of peak power density among different nanoparticle-decorated materials

References

- Liu, S. B., Chuang, K. T. & Luo, J. L. Double-layered perovskite anode with in situ exsolution of a Co–Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell. *ACS Catalysis* 6, 760-768 (2015).
- 2 Fu, L. et al. Exsolution of Cu nanoparticles in (LaSr)_{0.9}Fe_{0.9}Cu_{0.1}O₄ Ruddlesden-Popper oxide as symmetrical electrode for solid oxide cells. *Applied Surface Science* **511**, 145525 (2020).
- 3 Li, H. D. et al. Exsolved alloy nanoparticles decorated Ruddlesden–Popper perovskite as sulfur-tolerant anodes for solid oxide fuel cells. *Energy & Fuels* **34**, 11449-11457 (2020).
- 4 Ni, C. S. et al. A B-site doped perovskite ferrate as an efficient anode of a solid oxide fuel cell with in situ metal exsolution. *Journal of Materials Chemistry A* **7**, 26944-26953 (2019).
- 5 Kang, B. S., Matsuda, J. & Ishihara, T. Cu–Fe–Ni nano alloy particles obtained by exsolution from Cu(Ni)Fe₂O₄ as active anode for SOFCs. *Journal of Materials Chemistry A* 7, 26105-26115 (2019).
- 6 Zhou, J. et al. In situ growth of nanoparticles in layered perovskite $La_{0.8}Sr_{1.2}Fe_{0.9}Co_{0.1}O_{4-\delta}$ as an active and stable electrode for symmetrical solid oxide fuel cells. *Chemistry of Materials* **28**, 2981-2993 (2016).
- 7 Sun, Y. F. et al. A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. *Journal of Materials Chemistry A* 3, 11048-11056 (2015).