Supporting Information

Rapidly tuning electrocatalytic activity of perovskite oxides

by plasma treatment

Zhu Sun,*,1,3,5 Weiwei Fan,*,2,4,5 Tianquan Lin^{1,3}

¹School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

²Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

³Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201210, China

⁴Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA

⁵These authors contributed equally to this work.

Four fundamental states of matter

Figure S1. Illustration of the four fundamental states of matter.

Figure S2. **a,** Rietveld refinement XRD profile of the as-synthesized LCT oxide. **b,c,d,** Crystal structural of LCT oxide at different views, where blue spheres denote La/Ca, pink spheres denote Ti, grey spheres denote O.

Figure S3. SEM image of the LCTN after thermal treatment at 350 ℃ for 1h in H2.

Figure S4. SEM image of the plasma-treated LCT.

Figure S5. **a,** Nyquist plots of the fresh LCT electrode collected from 700 to 900 ℃ in hydrogen atmosphere under OCV conditions. **b**, Arrhenius plots of R_p for fresh LCT electrode.

Figure S6. **a,** Nyquist plots of the plasma-treated LCT collected from 700 to 900 ℃ in hydrogen atmosphere under OCV conditions. **b**, Arrhenius plots of R_p of the plasma-treated LCT electrode. **c,** Time dependence of *R*^p collected at 700 ℃ in hydrogen atmosphere for the plasma-treated LCT.

Figure S7. Comparison of *R*^p between the fresh LCTN and the plasma-treated LCTN at different temperatures.

Figure S8. Voltage and power density versus current density for the cell LCT(fresh)|SSZ|LSM-SSZ measured from 700 to 900 °C using humidified H_2 as fuel and air as oxidant.

Figure S9. SEM image of the plasma-treated LCTN after stability test.

Figure S10. Nyquist plots of the half-cell LSM-SSZ|SSZ|LSM-SSZ collected at 900 ℃ under OCV condition in air.

Figure S11. **a,** Voltage and power density versus current density for the cell LCT(plasmatreated)|SSZ|LSM-SSZ measured from 700 to 900 °C using humidified H_2 as fuel and air as oxidant. **b,** Cell voltage as a function of testing time for the single cell LCT(plasmatreated)|SSZ|LSM-SSZ at 700 °C.

Activation energy calculation:

Activation energy (E_a) , associating with the electrochemical reaction mechanism including the processes of gas adsorption, dissociation and diffusion, can be calculated by the following equation.

$$
\log R_p = \log R_0 - \frac{E_a}{2.303RT} \tag{1}
$$

where R_0 is the pre-exponential factor, R is the gas constant (8.314 J mol⁻¹ K⁻¹), T is the absolute temperature (K).

Atoms, sites	Parameters	$_{\rm LCTN}$
	Space group	Pbnm (62)
	$a(\AA)$	5.4642(4)
	b(A)	7.7339(4)
	c(A)	5.4633(7)
	$V(\AA^3)$	230.87
	\boldsymbol{x}	0.4670
	\mathcal{Y}	0.2500
La, 4c	\boldsymbol{Z}	0.0072
	Occupancy	0.43
	\boldsymbol{x}	0.4670
Ca, 4c	\mathcal{Y}	0.2500
	\boldsymbol{Z}	0.0072
	Occupancy	0.37
	\boldsymbol{x}	$\boldsymbol{0}$
Ti, 4a	$\mathcal Y$	$\boldsymbol{0}$
	\boldsymbol{Z}	$\boldsymbol{0}$
	Occupancy	0.94
	\boldsymbol{x}	$\boldsymbol{0}$
Ni, 4a	$\mathcal Y$	$\boldsymbol{0}$
	\boldsymbol{Z}	$\boldsymbol{0}$
	Occupancy	$0.06\,$
	$\boldsymbol{\mathcal{X}}$	0.5107
O1, 4c	$\mathcal Y$	0.2500
	\boldsymbol{Z}	0.5722
	Occupancy	$\,1$
	$\boldsymbol{\mathcal{X}}$	0.2158
	$\mathcal Y$	0.0346
O1, 8d	\boldsymbol{Z}	0.2826
	Occupancy	$\mathbf{1}$
	$R_{\rm wp}$	16.68
	$R_{\rm p}$	12.54
	χ^2	4.09

Table S1. Refined structural parameters for LCTN obtained by fitting of powder XRD data at room temperature.

Atoms, sites	Parameters	LCT
	Space group	Pbnm (62)
	a(A)	5.4587(5)
	b(A)	7.7261(5)
	c(A)	5.4562(4)
	$V(\AA^3)$	230.11
	$\boldsymbol{\chi}$	0.4670
	\mathcal{Y}	0.2500
La, 4c	\boldsymbol{Z}	0.0072
	Occupancy	0.43
	\boldsymbol{x}	0.4670
	\mathcal{Y}	0.2500
Ca, 4c	\boldsymbol{Z}	0.0072
	Occupancy	0.37
	$\boldsymbol{\chi}$	$\boldsymbol{0}$
	\mathcal{Y}	$\boldsymbol{0}$
Ti, 4a	\bar{z}	$\boldsymbol{0}$
	Occupancy	$\mathbf{1}$
	\boldsymbol{x}	0.5107
	\mathcal{Y}	0.2500
O1, 4c	\boldsymbol{z}	0.5722
	Occupancy	$\,1$
	\boldsymbol{x}	0.2158
	\mathcal{Y}	0.0346
O1, 8d	\boldsymbol{z}	0.2826
	Occupancy	$\mathbf 1$
	$R_{\rm wp}$	14.83
	$R_{\rm p}$	10.19
	χ^2	3.01

Table S2. Refined structural parameters for LCT obtained by fitting of powder XRD data at room temperature.

$$
M_xO_y + yH_2(g) \xrightarrow{\text{Reduction}} xM^0 + yH_2O(g)
$$
 (2)

Thore so Thermodynamic parameters of reducing the corresponding oxide to mean at 700 c						
Metal oxides	ΔH (kJ)	ΔS (J K ⁻¹)	ΔG (kJ)	Equilibrium constant K		
La_2O_3	1041.806	110.115	912.625	2.301E-41		
CaO	395.428	56.933	328.637	2.324E-15		
TiO ₂	445.167	67.578	365.888	5.098E-17		
NiO.	-14.070	30.238	-49.544	$1.607E + 02$		

Table S3 Thermodynamic parameters of reducing the corresponding oxide to metal at 900 ℃

Host oxide	Exsolved particle	Size	Exsolving time	PPD
		(nm)	(h)	$(W cm-2)$
LCTN (this work)	Ni	16	0.25	1.1
$(\text{Pr}_{0.4}\text{Sr}_{0.6})_3(\text{Fe}_{0.85}\text{Mo}_{0.15})_2\text{O}_7^{-1}$	$Co-Fe$	80	2	0.5
$(Lasr)_{0.9}Fe_{0.9}Cu_{0.1}O_4^2$	Cu	50	10	0.57
$La_1 2Sr_0 8Mn_0 4Fe_0 6O_4-3^3$	Fe ₃ Co ₂	30	20	0.63
La_0 95 Fe _{0.80} Ni _{0.05} Ti _{0.15} O ₃ ⁴	Ni	25	5	0.6
$Cu1-rNirFe2O45$	$Cu-Fe-Ni$	60	1	0.67
$La_{0.8}Sr_{1.2}Fe_{0.9}Co_{0.1}O_{4\pm6}$ ⁶	Co	10	20	0.24
$La_{0.7}Sr_{0.3}CrO_3^7$	Ni	20	4	0.31

Table S4 Comparison of peak power density among different nanoparticle-decorated materials

References

- 1 Liu, S. B., Chuang, K. T. & Luo, J. L. Double-layered perovskite anode with in situ exsolution of a Co–Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell. *ACS Catalysis* **6**, 760-768 (2015).
- 2 Fu, L. et al. Exsolution of Cu nanoparticles in $(LaSr)_{0.9}Fe_{0.9}Cu_{0.1}O_4$ Ruddlesden-Popper oxide as symmetrical electrode for solid oxide cells. *Applied Surface Science* **511**, 145525 (2020).
- 3 Li, H. D. et al. Exsolved alloy nanoparticles decorated Ruddlesden–Popper perovskite as sulfur-tolerant anodes for solid oxide fuel cells. *Energy & Fuels* **34**, 11449-11457 (2020).
- 4 Ni, C. S. et al. A B-site doped perovskite ferrate as an efficient anode of a solid oxide fuel cell with in situ metal exsolution. *Journal of Materials Chemistry A* **7**, 26944-26953 (2019).
- 5 Kang, B. S., Matsuda, J. & Ishihara, T. Cu–Fe–Ni nano alloy particles obtained by exsolution from Cu(Ni)Fe2O⁴ as active anode for SOFCs. *Journal of Materials Chemistry A* **7**, 26105- 26115 (2019).
- 6 Zhou, J. et al. In situ growth of nanoparticles in layered perovskite $La_{0.8}Sr_{1.2}Fe_{0.9}Co_{0.1}O_{4-\delta}$ as an active and stable electrode for symmetrical solid oxide fuel cells. *Chemistry of Materials* **28**, 2981-2993 (2016).
- 7 Sun, Y. F. et al. A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. *Journal of Materials Chemistry A* **3**, 11048- 11056 (2015).