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Figure S1. Illustration of the four fundamental states of matter. 
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Figure S2. a, Rietveld refinement XRD profile of the as-synthesized LCT oxide. b,c,d, Crystal 
structural of LCT oxide at different views, where blue spheres denote La/Ca, pink spheres denote 
Ti, grey spheres denote O.
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Figure S3. SEM image of the LCTN after thermal treatment at 350 ℃ for 1h in H2.
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Figure S4. SEM image of the plasma-treated LCT. 
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Figure S5. a, Nyquist plots of the fresh LCT electrode collected from 700 to 900 ℃ in hydrogen 
atmosphere under OCV conditions. b, Arrhenius plots of Rp for fresh LCT electrode.
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Figure S6. a, Nyquist plots of the plasma-treated LCT collected from 700 to 900 ℃ in hydrogen 
atmosphere under OCV conditions. b, Arrhenius plots of Rp of the plasma-treated LCT electrode. 
c, Time dependence of Rp collected at 700 ℃ in hydrogen atmosphere for the plasma-treated LCT.
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Figure S7. Comparison of Rp between the fresh LCTN and the plasma-treated LCTN at different 
temperatures.
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Figure S8. Voltage and power density versus current density for the cell LCT(fresh)|SSZ|LSM-
SSZ measured from 700 to 900 ℃ using humidified H2 as fuel and air as oxidant.
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Figure S9. SEM image of the plasma-treated LCTN after stability test.
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Figure S10. Nyquist plots of the half-cell LSM-SSZ|SSZ|LSM-SSZ collected at 900 ℃ under 
OCV condition in air.
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Figure S11. a, Voltage and power density versus current density for the cell LCT(plasma-
treated)|SSZ|LSM-SSZ measured from 700 to 900 ℃ using humidified H2 as fuel and air as 
oxidant. b, Cell voltage as a function of testing time for the single cell LCT(plasma-
treated)|SSZ|LSM-SSZ at 700 °C.
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Activation energy calculation:
Activation energy (Ea), associating with the electrochemical reaction mechanism 
including the processes of gas adsorption, dissociation and diffusion, can be 
calculated by the following equation.

                                                   (1)0log log
2.303

a
p

ER R
RT

 

where R0 is the pre-exponential factor, R is the gas constant (8.314 J mol−1 K−1), T is 
the absolute temperature (K).
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Table S1. Refined structural parameters for LCTN obtained by fitting of powder XRD data 

at room temperature.

Atoms, sites Parameters LCTN
Space group Pbnm (62)

a (Å) 5.4642(4)
b (Å) 7.7339(4)
c (Å) 5.4633(7)

V (Å3) 230.87

x 0.4670

y 0.2500

z 0.0072
La, 4c

Occupancy 0.43

x 0.4670

y 0.2500

z 0.0072
Ca, 4c

Occupancy 0.37
x 0
y 0
z 0

Ti, 4a

Occupancy 0.94
x 0
y 0
z 0

Ni, 4a

Occupancy 0.06
x 0.5107
y 0.2500
z 0.5722

O1, 4c

Occupancy 1
x 0.2158
y 0.0346
z 0.2826

Occupancy 1
O1, 8d

Rwp 16.68
Rp 12.54
χ2 4.09
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Table S2. Refined structural parameters for LCT obtained by fitting of powder XRD data at 

room temperature.

Atoms, sites Parameters LCT
Space group Pbnm (62)

a (Å) 5.4587(5)
b (Å) 7.7261(5)
c (Å) 5.4562(4)

V (Å3) 230.11

x 0.4670

y 0.2500

z 0.0072
La, 4c

Occupancy 0.43

x 0.4670

y 0.2500

z 0.0072
Ca, 4c

Occupancy 0.37
x 0
y 0
z 0

Ti, 4a

Occupancy 1
x 0.5107
y 0.2500
z 0.5722

O1, 4c

Occupancy 1
x 0.2158
y 0.0346
z 0.2826

Occupancy 1
O1, 8d

Rwp 14.83
Rp 10.19
χ2 3.01
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                                      (2)Reduction 0
2 2M O + H (g) M + H O(g)x y y x y

Table S3 Thermodynamic parameters of reducing the corresponding oxide to metal at 900 ℃
Metal oxides ΔH (kJ) ΔS (J K-1) ΔG (kJ) Equilibrium constant K

La2O3 1041.806 110.115 912.625 2.301E-41
CaO 395.428 56.933 328.637 2.324E-15
TiO2 445.167 67.578 365.888 5.098E-17
NiO −14.070 30.238 -49.544 1.607E+02
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Table S4 Comparison of peak power density among different nanoparticle-decorated materials

Host oxide Exsolved particle
Size
(nm)

Exsolving time
(h)

PPD
(W cm-2)

LCTN (this work) Ni 16 0.25 1.1

(Pr0.4Sr0.6)3(Fe0.85Mo0.15)2O7
1 Co-Fe 80 2 0.5

(LaSr)0.9Fe0.9Cu0.1O4
2 Cu 50 10 0.57

La1.2Sr0.8Mn0.4Fe0.6O4−δ
3 Fe3Co2 30 20 0.63

La0.95Fe0.80Ni0.05Ti0.15O3
4 Ni 25 5 0.6

Cu1-xNixFe2O4
5 Cu-Fe-Ni 60 1 0.67

La0.8Sr1.2Fe0.9Co0.1O4±δ
6 Co 10 20 0.24

La0.7Sr0.3CrO3
7 Ni 20 4 0.31
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