## **Supporting Information**

# Interfacial modulation to low lattice thermal conductivity and enhanced thermoelectric performance in *n*-type Mg<sub>3</sub>(Sb, Bi)<sub>2</sub>based materials *via* Graphene and MXene

Bang-Zhou Tian<sup>a</sup>, Yi-Yan Liao<sup>b</sup>, Fang Xu<sup>a</sup>, Xiao-Ling Qiu<sup>b</sup>, Fu-Jie Zhang<sup>a</sup>, Ran Ang<sup>a, c, \*</sup>

<sup>a</sup> Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
<sup>b</sup> School of Materials Science & Engineering, Sichuan University, Chengdu 610064, China
<sup>c</sup> Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
\*Corresponding author and Email: <u>rang@scu.edu.cn</u>

#### 1. Lorenz number and density of state mass calculations

The Lorenz number (*L*) and density of state mass ( $m^*$ ) is calculated using the single parabolic band (SPB) model with measured Seebeck coefficient (*S*) and carrier concentration (n) according to the following equations <sup>1</sup>:

$$S = \frac{k_{\rm B}}{e} \left[ \left( \frac{(2+\lambda)F_{1+\lambda}(\mu)}{(1+\lambda)F_{\lambda}(\mu)} \right) - \mu \right]$$
$$F_i(\mu) = \int_0^\infty \frac{\varepsilon^i}{1 + \exp(\varepsilon - \mu)} d\varepsilon$$
$$L = \left(\frac{k_{\rm B}}{e}\right)^2 \left[ \frac{\lambda + 3}{\lambda + 1} \frac{F_{\lambda+2}(\mu)}{F_{\lambda}(\mu)} - \left(\frac{\lambda + 2}{\lambda + 1}\right)^2 \left(\frac{F_{\lambda+1}(\mu)}{F_{\lambda}(\mu)}\right)^2 \right]$$
$$m^* = \frac{h^2}{2k_{\rm B}T} \left(\frac{n}{4\pi F_{1/2}(\mu)}\right)^2$$

Where  $\mu$  is reduced Fermi level,  $F_i(\mu)$  is Fermi integral,  $k_B$  is the Boltzmann constant, h is the Planck constant and  $\lambda$  is scattering parameter.

#### 2. Weighted mobility calculation

Weighted mobility ( $\mu_W$ ) (electron mobility weighted by the density of electronic states) is obtained using the following equation <sup>2</sup>:

\_

$$\mu_{\rm W} = \frac{331}{\rho} \left(\frac{T}{300}\right)^{-\frac{3}{2}} \left[ \frac{\exp\left(\frac{|S|}{k_{\rm B}/e} - 2\right)}{1 + \exp\left[-5\left(\frac{|S|}{k_{\rm B}/e} - 1\right)\right]} + \frac{\frac{3|S|}{\pi^2 k_{\rm B}/e}}{1 + \exp\left[5\left(\frac{|S|}{k_{\rm B}/e} - 1\right)\right]} \right]$$

Where  $\rho$  is electrical resistivity. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials. At the optimal carrier concentration, the maximum of zT depends on the ratio of  $\mu_W / \kappa_L$ .

\_



Fig. S1 Few-layer MXene preparation process.

| sample name | density (g cm <sup>-3</sup> ) | relative density (%) |
|-------------|-------------------------------|----------------------|
| x = 0       | 5.12                          | 98.5                 |
| x = 0.2  G  | 5.03                          | 96.7                 |
| x = 0.4  G  | 4.96                          | 95.3                 |
| x = 0.6  G  | 4.9                           | 94.2                 |
| x = 0.3 M   | 5.06                          | 97.3                 |
| x = 0.6 M   | 5.02                          | 96.5                 |
| x = 0.9 M   | 4.95                          | 95.2                 |

Table S1 The density of  $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -x wt% Graphene or MXene samples.



**Fig. S2** (a) Thermal diffusion coefficient and (b) specific heat of  $Mg_{3,2}Sb_{0,5}Bi_{1,49}Te_{0,01}-x$  wt% Graphene. (c) Thermal diffusion coefficient and (d) specific heat of  $Mg_{3,2}Sb_{0,5}Bi_{1,49}Te_{0,01}-x$  wt% MXene.



**Fig. S3** (a)-(d) The XRD refinement of Mg<sub>3.2</sub>Sb<sub>0.5</sub>Bi<sub>1.49</sub>Te<sub>0.01</sub>-*x* wt% Graphene (x = 0, 0.2, 0.4 and 0.6. respectively). (e)-(h) The XRD refinement of Mg<sub>3.2</sub>Sb<sub>0.5</sub>Bi<sub>1.49</sub>Te<sub>0.01</sub>-*x* wt% MXene (x = 0, 0.3, 0.6 and 0.9. respectively).



Fig. S4 (a) The cross-section SEM image of x = 0.4 G with (b-f) elemental maps of C, Mg, Sb, Bi and O, and (g) spectrogram of the total number of distribution maps.



**Fig. S5** (a)-(d) Cross-section SEM images of the  $Mg_{3,2}Sb_{0,5}Bi_{1,49}Te_{0,01}-x$  wt% Graphene and  $(a_1)$ - $(d_1)$  are the corresponding grain size statistics respectively. (e)-(h) Cross-section SEM images of the  $Mg_{3,2}Sb_{0,5}Bi_{1,49}Te_{0,01}-x$  wt% MXene and  $(e_1)$ - $(h_1)$  are the corresponding grain size statistics respectively.



**Fig. S6** (a) and (b) The electron back-scattering diffraction (EBSD) image of  $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -0.6 wt% MXene sample, (c) the statistics of grain size obtained from the EBSD analyses.



Fig. S7 Spectrogram of the total number of distribution maps in (a)  $Mg_{3,2}Sb_{0,5}Bi_{1,49}Te_{0,01}$ -0.4 wt% Graphene and (b)

 $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -0.6 wt% MXene samples.



Fig. S8 (a) The polished surface SEM image of x = 0.4 G with (b-f) elemental maps of C, Mg, Sb, Bi and O, and (g) spectrogram of the total number of distribution maps.



Fig. S9 (a) Density of states effective mass  $m^*$  and (b) average power factor between 303 and 513 K of Mg<sub>3.2</sub>Sb<sub>0.5</sub>Bi<sub>1.49</sub>Te<sub>0.01</sub>-x wt% Graphene. (c) Density of states effective mass  $m^*$  and (d) average power factor between 303 and 513 K of Mg<sub>3.2</sub>Sb<sub>0.5</sub>Bi<sub>1.49</sub>Te<sub>0.01</sub>-x wt% MXene.



**Fig. S10** Lorenz parameter of (a)  $Mg_{3,2}Sb_{0,5}Bi_{1,49}Te_{0,01}-x$  wt% Graphene and (b)  $Mg_{3,2}Sb_{0,5}Bi_{1,49}Te_{0,01}-x$  wt% MXene.

### References

- 1. J. J. Kuo, S. D. Kang, K. Imasato, H. Tamaki, S. Ohno, T. Kanno and G. J. Snyder, *Energy Environ*. *Sci.*, 2018, **11**, 429-434.
- G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder and C. Niu, *Adv. Mater.*, 2020, 32, e2001537.