Supporting Information

Interfacial modulation to low lattice thermal conductivity and enhanced thermoelectric performance in *n*-type $Mg_3(Sb, Bi)_{2}$ **based materials** *via* **Graphene and MXene**

Bang-Zhou Tian^a, Yi-Yan Liao ^b, Fang Xu^a, Xiao-Ling Qiu ^b, Fu-Jie Zhang^a, Ran Ang ^{a, c, *}

*^a Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China ^b School of Materials Science & Engineering, Sichuan University, Chengdu 610064, China c Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China *Corresponding author and Email: rang@scu.edu.cn*

1. Lorenz number and density of state mass calculations

The Lorenz number (*L*) and density of state mass (*m**) is calculated using the single parabolic band (SPB) model with measured Seebeck coefficient (*S*) and carrier concentration (*n*) according to the following equations 1 :

$$
S = \frac{k_{\rm B}}{e} \left[\left(\frac{(2+\lambda)F_{1+\lambda}(\mu)}{(1+\lambda)F_{\lambda}(\mu)} \right) - \mu \right]
$$

\n
$$
F_i(\mu) = \int_0^\infty \frac{\varepsilon^i}{1 + \exp(\varepsilon - \mu)} d\varepsilon
$$

\n
$$
L = \left(\frac{k_{\rm B}}{e} \right)^2 \left[\frac{\lambda + 3}{\lambda + 1} \frac{F_{\lambda+2}(\mu)}{F_{\lambda}(\mu)} - \left(\frac{\lambda + 2}{\lambda + 1} \right)^2 \left(\frac{F_{\lambda+1}(\mu)}{F_{\lambda}(\mu)} \right)^2 \right]
$$

\n
$$
m^* = \frac{h^2}{2k_{\rm B}T} \left(\frac{n}{4\pi F_{1/2}(\mu)} \right)^{\frac{2}{3}}
$$

Where μ is reduced Fermi level, $F_i(\mu)$ is Fermi integral, k_B is the Boltzmann constant, *h* is the Planck constant and λ is scattering parameter.

2. Weighted mobility calculation

Weighted mobility (μ_w) (electron mobility weighted by the density of electronic states) is obtained using the following equation 2 :

$$
\mu_{\rm w} = \frac{331}{\rho} \left(\frac{T}{300} \right)^{-\frac{3}{2}} \left[\frac{\exp\left(\frac{|S|}{k_B/e} - 2 \right)}{1 + \exp\left[-5\left(\frac{|S|}{k_B/e} - 1 \right) \right]} + \frac{\frac{3|S|}{\pi^2 k_B/e}}{1 + \exp\left[5\left(\frac{|S|}{k_B/e} - 1 \right) \right]} \right]
$$

Where ρ is electrical resistivity. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials. At the optimal carrier concentration, the maximum of *zT* depends on the ratio of $\mu_{\rm W}/\kappa_{\rm L}$.

Fig. S1 Few-layer MXene preparation process.

sample name	density $(g \text{ cm}^{-3})$	relative density $(\%)$
$x = 0$	5.12	98.5
$x = 0.2$ G	5.03	96.7
$x = 0.4$ G	4.96	95.3
$x = 0.6$ G	4.9	94.2
$x = 0.3 M$	5.06	97.3
$x = 0.6 M$	5.02	96.5
$x = 0.9 M$	4.95	95.2

Table S1 The density of $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -*x* wt% Graphene or MXene samples.

Fig. S2 (a) Thermal diffusion coefficient and (b) specific heat of $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -*x* wt% Graphene. (c) Thermal diffusion coefficient and (d) specific heat of $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -*x* wt% MXene.

Fig. S3 (a)-(d) The XRD refinement of $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -*x* wt% Graphene ($x = 0, 0.2, 0.4$ and 0.6. respectively). (e)-(h) The XRD refinement of $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -*x* wt% MXene ($x = 0, 0.3, 0.6$ and 0.9. respectively).

Fig. S4 (a) The cross-section SEM image of *x* = 0.4 G with (b-f) elemental maps of C, Mg, Sb, Bi and O, and (g) spectrogram of the total number of distribution maps.

Fig. S5 (a)-(d) Cross-section SEM images of the $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}x$ wt% Graphene and (a₁)-(d₁) are the corresponding grain size statistics respectively. (e)-(h) Cross-section SEM images of the Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}-*x* wt% MXene and (e_1) - (h_1) are the corresponding grain size statistics respectively.

Fig. S6 (a) and (b) The electron back-scattering diffraction (EBSD) image of $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -0.6 wt% MXene sample, (c) the statistics of grain size obtained from the EBSD analyses.

Fig. S7 Spectrogram of the total number of distribution maps in (a) $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -0.4 wt% Graphene and (b)

 $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}$ -0.6 wt% MXene samples.

Fig. S8 (a) The polished surface SEM image of *x* = 0.4 G with (b-f) elemental maps of C, Mg, Sb, Bi and O, and (g) spectrogram of the total number of distribution maps.

Fig. S9 (a) Density of states effective mass *m** and (b) average power factor between 303 and 513 K of Mg3.2Sb0.5Bi1.49Te0.01-*x* wt% Graphene. (c) Density of states effective mass *m** and (d) average power factor between 303 and 513 K of Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}-*x* wt% MXene.

Fig. S10 Lorenz parameter of (a) $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}x$ wt% Graphene and (b) $Mg_{3.2}Sb_{0.5}Bi_{1.49}Te_{0.01}x$ wt% MXene.

References

- 1. J. J. Kuo, S. D. Kang, K. Imasato, H. Tamaki, S. Ohno, T. Kanno and G. J. Snyder, *Energy Environ. Sci.*, 2018, **11**, 429-434.
- 2. G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder and C. Niu, *Adv. Mater.*, 2020, **32**, e2001537.