Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Improving the Performance of SnS₂ Cathode with Interspace Layer Engineering Using Na⁺

Insertion/Extraction Method for Aqueous Zinc Ion Batteries

Ali Molaei Aghdam *^a, Nima Mikaeili Chahartagh^b, Ehsan Delfani^b, Shahriar Namvar^c, Mahshid

Ershadi^d, Farshad Boorboor Ajdari*^{e,f}

^aDepartment of Chemical Engineering, Auburn University, Auburn, AL 36849, USA

^b Surface Reaction and Advanced Energy Materials Laboratory, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), PO Box 15875-4413, Tehran, Iran

^c Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), PO Box 15875-4413, Tehran, Iran

^dState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049 P.

R. China

^eDepartment of Applied chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran

E-mail: azm0382@auburn.edu,

farshad@xjtu.edu.cn

Materials Characterizations

On an X-ray diffractometer (Bruker D2 Phaser), the sample crystal structures were examined using copper-K α radiation ($\lambda = 1.54178$ Å) throughout a 2θ range of 5 to 80 degrees. SEM (Philips XL 30) and TEM (Philips EM208) were used to examine the microstructure and morphology of the samples. A spectrometer (BRUKER-ALPHA) gathered Fourier transform infrared (FTIR) spectra. XPS measurements (PHI 5500) were taken to analyze the surface elemental composition and the corresponding valance states. HRTEM was performed using a field emission electron microscope (JEM-3000F (JEOL)) operating at 300 kV. EDX elemental mapping and HAADF-STEM investigations were done on a JEOL JEM-ARM200CF at 200 kV. A probe aberration corrector was installed in a STEM.

Electrochemical Measurements

The dispersion of PVDF (10 wt%) binder, super black carbon (20 wt%), and active materials (70 wt%) were performed in N-Methyl pyrrolidone. The resultant slurry was cast onto Carbon cloth to make the working electrode. The electrode was then sliced into circular slices (diameter = 11 mm) with an active mass loading of 1.75-2.1 mg cm⁻² followed by vacuum drying at 80 °C for 10 hours. Fiber glass separator, working electrode, ZnSO₄ (1M) aqueous electrolyte, and zinc anode manufactured CR2032 coin cells in ambient air. Between the zinc anode and SnS₂, the separator was used to complete the AZIB. Charge-discharge cycle measurements were conducted using a Kimiastat battery test system within a voltage range from 0 to 2 V vs. Zn²⁺/Zn. CV and electrochemical impedance spectroscopy (EIS) tests were recorded by Autolab (PGSTAT 302 N).

Materials Synthesis

Synthesis of SnS_2 : SnS₂ was first synthesized by a hydrothermal method with SnCl₂· 2H₂O and thiourea as the sources of tin and sulfur, respectively. In a typical synthetic process, 2 mmol SnCl₂·2H₂O, 0.8 mL of HCl (mass fraction of 36-38%), and 16 mmol thiourea were dissolved into 60 mL of deionized water under vigorous magnetic stirring for 60 min to form a homogeneous solution. The solution was transferred into a 100 mL Teflon-lined stainless-steel autoclave followed by hydrothermal treatment at 145 °C for 24 h. After the autoclave was cooled to room temperature naturally, the obtained primary product, i.e., SnS₂, was centrifuged and washed several times by deionized water and absolute ethyl alcohol and finally dried at 60 °C for 12 h in the air environment.

Synthesis of SnS_2 -*HIL*: To increase the interspace layer of SnS₂, we used sodium ion insertion/extraction method. The coin-type cell was assembled with a cathode, fiber glass as a separator, and zinc foil as an anode. For the sodium source, we used 1M sodium sulfate electrolyte. Insertion/ extraction Na ion was conducted under constant current protocol using are battery tester within a voltage range of 0–2 V vs. Zn/Zn ²⁺.

Zn-ions diffusion coefficient calculation based on the GITT measurement:

The kinetics of Zn^{2+} intercalation during the charge/discharge reaction of SnS₂-HIL cathode material in depth was investigated using the galvanostatic intermittent titration technique (GITT). The diffusion coefficient of Zn^{2+} (D_{Zn}) was calculated using the following equation:

$$D_{Zn} = \frac{4}{\pi\tau} \left(\frac{mV_m}{MA}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2$$

Where τ , M, m, V_m, A severally represented the relaxation time, the molar mass of active material, the mass of active material, the molar volume, and the contact area between electrode and electrolyte, while Δ Es and Δ E τ represented the values of pulse voltage change and voltage change of constant-current charge/discharge, respectively.

Zn-ions concentration calculation:

Firstly, the unit cell volume of SnS₂-HIL was calculated by"a (3.826Å) × b (3.826Å) × c (3.826Å) × c (3.826Å) × sin45° = **39.601**× 10⁻²⁴ cm³", thereby 1 cm³ contains 1/39.601 × 10⁻²⁴ = 2.25 × 10²² unit cells. Since each SnS₂-HIL unit cell contains two molecules, and each molecule contains 0.9 Zn-ions, 1 cm³ contains 2.25 × 10²²/6.02 × 10²³ × 8 × 0.9 = 5.15 × 10⁻³ mol Zn-ions. Therefore, the Zn-ions concentration in the electrode is approximately 5.15×10^{-3} mol cm⁻³¹.

Figure S1. SEM image of SnS₂

Figure S2. a,b) SEM image of SnS₂ after insertion/extraction Na⁺. c) TEM image of SnS₂ after

insertion/extraction Na⁺.

Figure S3. a) XRD for pristine SnS₂ and SnS₂ cathodes after insertion/extraction Na⁺. Water contact angles of b) pristine SnS₂ and c) after insertion/extraction Na⁺.

Figure S4. a)charge/discharge curves at 0.1 A g⁻¹ over the voltage range of 0-2 V of the SnS₂ cathode for Na⁺ insertion/extraction in 1M Na₂SO₄. CV curves of SnS₂ cathodes at a scan rate of 0.3 mV s^{-1} in b) 1M ZnSO₄, c) 1M Na₂SO₄, and d) 1M Na₂SO₄ + 1M ZnSO₄

Figure S5. CV curves of SnS_2 cathodes at a scan rate of 0.3 mV s⁻¹.

Figure S6. charge/discharge curves at 0.1 A g^{-1} over the voltage range of 0-2 V of the SnS₂ cathode.

Figure S7. Typical galvanostatic charge and discharge profiles of SnS₂ cathode for different current densities.

Figure S8. Rate capability at 0.1-10 A g^{-1} of SnS₂ cathode

Figure S9 cycling performance at 0. 1 A g⁻¹ of the SnS₂-HILcathode.

Figure S10 cycling performance at 0.1 A g^{-1} of the pristine SnS₂ cathode.

Figure S11. a) CV curves of SnS₂ cathode at various scan rates. b) Plots of log i versus log v at specific peak currents. c) The percentage of capacitive contributions for SnS₂ cathode at various

sweep rates.

Figure S12 a) initial discharge/charge curve at 0.1 A g⁻¹, the marked states are chosen for ex-situ tests; b) ex-situ XRD patterns; c) ex-situ Raman spectra

Cathode materials	Electrolyte	Voltage	Canacity [mAh o ⁻¹]	Cycle stability	Ref
		, orenge			In
					this
SnS ₂ -HIL	1m ZnSO ₄	0-2 V	359 mAh g ⁻¹	83.7 after 1000 cycles at 5 A g ⁻¹	work
MoS ₂ /PANI	$3 \text{ m Zn}(CF_3SO_3)_2$	0.2–1.3 V	106.5 at 1.0 A g ⁻¹	86% after 1000 cycles at 1.0 A g^{-1}	2
MoS ₂ @CF	$3 \text{ m Zn}(CF_3SO_3)_2$	0.2–1.3 V	182 at 0.1 A g ⁻¹	94% over 1500 cycles at 2 A g^{-1}	3
MoS ₂ -nH ₂ O	$3 \text{ m Zn}(\text{CF}_3\text{SO}_3)_2$	0.2–1.25 V	165 at 0.1 A g ⁻¹	88% over 800 cycles at 1 A g ⁻¹	4
1T MoS ₂	$3 \text{ m Zn}(\text{CF3SO3})_2$	0.25–1.25 V	165 at 0.1 A g ⁻¹	98.1% over 400 cycles at 1 A g^{-1}	5
200-MoS2	$3 \text{ m Zn}(\text{CF}_3\text{SO3})_2$	0.25–1.3 V	148 at 0.5 A g ⁻¹	100% after 500 cycles at 2 A g^{-1}	6
Vertical 1T-				87.8% after 2000 cycles at 1 A	
MoS ₂	3 m Zn(CF ₃ SO ₃) ₂	0.25–1.25 V	198 at 0.1 A g ⁻¹	g ⁻¹	7
1T VS ₂	1 m ZnSO ₄	0.4–1.0 V	190 at 0.01 A g ⁻¹	98% after 200 cycles at 0.5 A g^{-1}	8
VS ₂ @SS	1 m ZnSO ₄	0.4–1.0 V	190 at 0.05 A g ⁻¹	80% after 2000 cycles at 2 A g ⁻¹	9
1T WS ₂	1 m ZnSO ₄	0.1–1.5 V	233.26 at 0.05 A g ⁻¹	/	10
TiSe ₂	2 m ZnSO ₄	0.05–0.6 V	128 at 0.2 A g ⁻¹	70% after 300 cycles at 1.0 A g^{-1}	11
				87.8% over 1800 cycles at 4 A	10
VSe _{2-x} -SS	$3 \text{ m Zn}(\text{CF}_3\text{SO}_3)_2$	0.4–1.6 V	265.2 at 0.2 A g ⁻¹	g ⁻¹	12
D Mas O	2 m Tn(CESO)	0.2.1.25 V	$261 \text{ st} 0.1 \text{ A} \text{ s}^{-1}$	90.5% after 1000 cycles at 1 A c^{-1}	13
D-10052-0	$5 \operatorname{III} \operatorname{ZII}(\operatorname{CF}_3 \operatorname{SO}_3)_2$	0.2-1.23 V	201 at 0.1 A g	83.3% over 2400 cycles at 1.4	-
$Co_3Sn_{1.8}S_2$	1 m Zn(TFSI) ₂	0.01–2.3 V	346 at 0.2 A g ⁻¹	g^{-1}	14
N-doped 1T	()2			89.1% after 1000 cycles at 3 A	
MoS ₂	3 m Zn(CF ₃ SO ₃) ₂	0.2–1.3 V	149.6 at 0.1 A g ⁻¹	g ⁻¹	15
VS ₂ @N-C	$3 \text{ m Zn}(CF_3SO_3)_2$	0.2–1.8 V	203 at 0.05 A g ⁻¹	97% after 600 cycles at 1 A g^{-1}	16
Co-doped	1 m KOH and			85.9% after 1000 cycles at 1 A	17
Ni3Se ₂	0.25 m ZnO	1.4–1.9 V	179.34 at 1 A g ⁻¹	g ⁻¹	17
MoS ₂ /Graphene	3 m Zn(CF ₃ SO ₃) ₂	0.2–1.5 V	283.9 at 0.1 A g ⁻¹	88.6% after 1800 cycles at 1 A g^{-1}	18
MoS ₂ @CNTs	3 m Zn(CF ₃ SO ₃) ₂	0.3–1.2 V	161.5 at 0.1 A g ⁻¹	80.1% after 500 cycles at 1 A g ⁻¹	19
rGO-VS ₂	$3 \text{ m Zn}(\text{CF}_3\text{SO}_3)_2$	0.4–1.7 V	238 at 0.1 A g ⁻¹	93% after 1000 cycles at 5.0 A g ⁻¹	20
rGO-VSe ₂	2 m ZnSO ₄	0.2–1.4 V	221.5 at 0.5 A g ⁻¹	91.6% after 150 cycles at 0.5 A g^{-1}	21
VS4@rGO	$1 \text{ m Zn}(CF_3SO_3)_2$	0–1.8 V	450 at 0.5 A g ⁻¹	82% after 3500 cycles at 10 A g ⁻¹	22
MoS3/MWCNTs	2 m ZnSO ₄	0.01–2 V	368 at 0.5 A g-1	85.6% after 100 cycles at 0.5 A g^{-1}	23
MnS/RGO	2 m ZnSO ₄ and 0.1 m MnSO ₄	0.8–1.9 V	289 at 0.1 A g ⁻¹	70.8% after 1000 cycles at 1 A g^{-1}	24
VS2@VOOH	$3 \text{ m Zn}(\text{CF}_3\text{SO3})_2$	0.4–1.0 V	165 at 0.1 A g ⁻¹	86% after 200 cycles at 1.0 A g ⁻¹ [123]	25
VS2/VOx	25 m ZnCl ₂	0.1–1.8 V	260 at 0.1 A g ⁻¹	75% after 3000 cycles at 1.0 A g ⁻¹ [142]	26

 Table S1. Summary of the electrochemical properties of transition-metal sulfides and selenides cathodes

References

- 1. Liu, Y. *et al.* Approaching the Downsizing Limit of Maricite NaFePO4 toward High-Performance Cathode for Sodium-Ion Batteries. *Adv. Funct. Mater.* **28**, (2018).
- 2. Huang, M. *et al.* Tuning the kinetics of zinc ion in MoS2 by polyaniline intercalation. *Electrochim. Acta* **388**, (2021).
- 3. Liu, H. *et al.* Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. *Energy Storage Mater.* **35**, 731–738 (2021).
- 4. Zhang, Z. *et al.* Crystal water assisting MoS2 nanoflowers for reversible zinc storage. *J. Alloys Compd.* (2021) doi:10.1016/j.jallcom.2021.159599.
- 5. Liu, J. *et al.* Boosting aqueous zinc-ion storage in MoS2 via controllable phase. *Chem. Eng. J.* **389**, (2020).
- 6. Cai, C. *et al.* A nano interlayer spacing and rich defect 1T-MoS 2 as cathode for superior performance aqueous zinc-ion batteries . *Nanoscale Adv.* **3**, 3780–3787 (2021).
- 7. Liu, J. *et al.* Vertically aligned 1 T phase MoS2 nanosheet array for high-performance rechargeable aqueous Zn-ion batteries. *Chem. Eng. J.* **428**, (2022).
- 8. He, P. *et al.* Layered VS2 nanosheet-based aqueous Zn ion battery cathode. *Adv. Energy Mater.* **7**, 1601920 (2017).
- 9. Jiao, T. *et al.* Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. *J. Mater. Chem. A* **7**, 16330–16338 (2019).
- 10. Tang, B. *et al.* Investigation of zinc storage capacity of WS2 nanosheets for rechargeable aqueous Zn-ion batteries. *J. Alloys Compd.* **894**, (2022).
- 11. Wen, L. *et al.* A novel TiSe2 (de)intercalation type anode for aqueous zinc-based energy storage. *Nano Energy* vol. 93 (2022).
- Bai, Y. *et al.* Selenium Defect Boosted Electrochemical Performance of Binder-Free VSe2Nanosheets for Aqueous Zinc-Ion Batteries. *ACS Appl. Mater. Interfaces* 13, 23230–23238 (2021).
- 13. Li, S. *et al.* Molecular Engineering on MoS2 Enables Large Interlayers and Unlocked Basal Planes for High-Performance Aqueous Zn-Ion Storage. *Angew. Chemie Int. Ed.* **60**, 20286–20293 (2021).
- 14. Zhao, Y. *et al.* Vacancy Modulating Co3Sn2S2 Topological Semimetal for Aqueous Zinc-Ion Batteries. *Angew. Chemie Int. Ed.* **61**, (2022).
- 15. Sheng, Z. *et al.* Nitrogen-Doped Metallic MoS2Derived from a Metal-Organic Framework for Aqueous Rechargeable Zinc-Ion Batteries. *ACS Appl. Mater. Interfaces* **13**, 34495–34506 (2021).
- 16. Liu, J., Peng, W., Li, Y., Zhang, F. & Fan, X. A VS2@N-doped carbon hybrid with strong interfacial

interaction for high-performance rechargeable aqueous Zn-ion batteries. J. Mater. Chem. C 9, 6308–6315 (2021).

- 17. Amaranatha Reddy, D. *et al.* Facile synthesis of cauliflower-like cobalt-doped Ni3Se2 nanostructures as high-performance cathode materials for aqueous zinc-ion batteries. *Int. J. Hydrogen Energy* **45**, 7741–7750 (2020).
- 18. Li, S. *et al.* Sandwich-Like Heterostructures of MoS2/Graphene with Enlarged Interlayer Spacing and Enhanced Hydrophilicity as High-Performance Cathodes for Aqueous Zinc-Ion Batteries. *Adv. Mater.* **33**, (2021).
- 19. Huang, M. *et al.* Hierarchical MoS2@CNTs Hybrid as a Long-Life and High-Rate Cathode for Aqueous Rechargeable Zn-Ion Batteries. *ChemElectroChem* **7**, 4218–4223 (2020).
- 20. Chen, T. *et al.* VS2 nanosheets vertically grown on graphene as high-performance cathodes for aqueous zinc-ion batteries. *J. Power Sources* **477**, (2020).
- 21. Narayanasamy, M. *et al.* Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery. *J. Alloys Compd.* **882**, (2021).
- 22. Chen, K. *et al.* Robust VS4@rGO nanocomposite as a high-capacity and long-life cathode material for aqueous zinc-ion batteries. *Nanoscale* **13**, 12370–12378 (2021).
- 23. Liu, Y. *et al.* Performance and application of carbon composite MoS3 as cathode materials for aqueous zinc-ion batteries. *J. Alloys Compd.* **893**, (2022).
- 24. Ma, S. C. *et al.* In situ preparation of manganese sulfide on reduced graphene oxide sheets as cathode for rechargeable aqueous zinc-ion battery. *J. Solid State Chem.* **299**, (2021).
- 25. Pu, X. *et al.* Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. *J. Power Sources* **437**, (2019).
- 26. Yu, D. *et al.* Boosting Zn2+ and NH4+ Storage in Aqueous Media via In-Situ Electrochemical Induced VS2/VOx Heterostructures. *Adv. Funct. Mater.* **31**, (2021).