Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Surface Wettability Guiding In-situ Cultivation Engineering of Hollow Polymer

Nanospheres for Persistent Efficient Uranium Extraction

Fan Wu, Hao Li,* Jing Tang, Abdul Haleem, Jianming Pan*

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu,

China. E-mail: haoli5385@ujs.edu.cn; pjm@ujs.edu.cn.

Formulas in the adsorption experiments:

The following lists the equations of pseudo-first-order (S1), pseudo-second-order (S2) ^[1]. $Q_t = Q_e - Q_e e^{-k_1 t} #S1$

$$Q_{\rm t} = \frac{k_2 Q_{\rm e}^2 t}{1 + k_2 Q_{\rm e} t} \# S2$$

 $Q_{\rm e}$ (mg g⁻¹) is the adsorption capacity at equilibrium, $Q_{\rm t}$ (mg g⁻¹) is the adsorption capacity at time *t*, k_1 (min⁻¹) and k_2 (g mg⁻¹ min⁻¹) are adsorption rate constant respectively.

Langmuir (S3) and Freundlich (S4) isotherm models ^[2]:

$$Q_{e} = \frac{K_{L}Q_{m}C_{e}}{1 + K_{L}C_{e}} \#S3$$
$$Q_{e} = K_{E}C^{n} \#S4$$

 $Q_{\rm m}$ (mg g⁻¹) is the maximum adsorption capacity. $K_{\rm L}$ (L mg⁻¹) and $K_{\rm F}$ (mg L⁻¹) are the adsorption constants of Langmuir and Freundlich equations, respectively. 1/n is the adsorption strength.

Thermodynamic parameters such as enthalpy change (ΔH , kJ mol⁻¹), entropy change (ΔS , J mol⁻¹ K⁻¹) and Gibbs free energy change (ΔG , kJ mol⁻¹) are calculated by following equations ^[3]:

$$K_{\rm d} = \frac{\left(C_0 - C_{\rm e}\right)V}{mC_{\rm e}} \#S5$$
$$\Delta G = -RT \ln K \#S6$$
$$\ln K = \frac{\Delta S}{R} - \frac{\Delta H}{RT} \#\#S7$$

Here K_d is the distribution coefficient, and R is the universal gas constant (8.314 J·K⁻¹·mol⁻¹).

Fig. S1 The macroscopic photos of m-CNTs (a) and m-CNTs@H-PDA-AO (b)

Fig. S2 The TEM images of CNTs@H-PDA after treatments with 100 °C hot water (a), 0.1 M

Fig. S3 The effect of initial pH of solution on adsorption of m-CNTs and m-CNTs@H-PDA (a) (C_0 = 10 mg L⁻¹, V = 50 mL, T = 298 K, m = 2.0 mg, t = 60 min, pH = 3.0-9.0); The Zeta potential values of m-CNTs@H-PDA in aqueous solutions at different pH values (b)

Fig. S4 Removal efficiency of m-CNTs@H-PDA-AO toward uranium with different concentrations (pH=8).

 Table S1 The fitting parameters of adsorption kinetics models of m-CNTs@H-PDA-AO for uranyl
 ion at different solution volumes

Sorbent	V (mL)	Pseud	lo-first-order		Pseudo-second-order			
	10	$Q_{\rm e,c} ({\rm mg~g^{-1}})$	$k_1 ({\rm min}^{-1})$	R^2	$Q_{\rm e,c} ({\rm mg~g^{-1}})$	k_2 (g mg ⁻¹ min ⁻¹)	R^2	
m-CNTs@H-PDA-AO	10	52.75 0.39 0.812 53.6		53.61	0.0210	0.964		
	50	$Q_{\rm e,c} ({\rm mg \ g^{-1}})$	k_1 (min ⁻¹)	R^2	$Q_{\rm e,c} ({\rm mg \ g^{-1}})$	k_2 (g mg ⁻¹ min ⁻¹)	R^2	
		154.20	0.16	0.982	174.20	0.0012	0.992	

 $Q_{e,c}$ (mg g⁻¹) is the kinetic equation fitting calculated value

Table S2 The fitting parameters of the adsorption equilibrium model of m-CNTs@H-PDA-AO for

	Langm	uir isotherm model		Freundlich isotherm model			
<i>T</i> (K)	Q_{\max}	$Q_{\rm max}$ $k_{\rm L}$		$k_{ m f}$	1/	n ²	
	$(mg g^{-1})$	(L mg ⁻¹)	<i>K</i> ²	$(mg^{1-n} g^{-1} L^n)$	1/n	<i>K</i> ²	
288	307.10	0.30	0.783	121.80	0.23	0.961	
298	381.98	0.28	0.803	138.90	0.26	0.977	
308	931.30	0.07	0.875	154.70	0.41	0.975	

uranyl ion at different temperatures

Table S3 The thermodynamic parameters for uranyl ion on m-CNTs@H-PDA-AO

<i>T</i> (K)	Ln <i>K</i>	$\Delta G (\mathrm{kJ} \mathrm{mol}^{-1})$	$\Delta H (\mathrm{kJ} \mathrm{mol}^{-1})$	$\Delta S (\text{J mol}^{-1} \text{ K}^{-1})$
288	1.3573	-3.25		
298	1.4348	-3.55	8.36	40.20
308	1.5849	-4.06		

Table S4 Initial concentration (C_0), Equilibrium Concentration (C_e) and Removal Efficiency (E_a) of uranyl ion and other metal ions

Ions	UO_{2}^{2+}	Fe ³⁺	Ni ²⁺	Pb^{2+}	Co ²⁺	VO ₃ -	\mathbf{K}^+	Ca ²⁺	Mg^{2+}	Na ⁺
C_0 (ppb)	330	170	90	73	6.0	282	0.65*106	0.92*10 ⁶	1.22*106	10.26*10 ⁶
$C_{\rm e}$ (ppb)	50.94	58.09	40.87	35.28	3.78	277	$0.65*10^{6}$	$0.92^{*}10^{6}$	1.22*106	10.26*106
E_{a} (%)	84.56%	65.83%	54.59%	51.67%	37%	1.77%	0	0	0	0

References

[1] F. Wu, H. Li, Y. Pan, Y. Sun, J. Pan, 2023. Bioinspired construction of magnetic nano stirring rods with radially aligned dual mesopores and intrinsic rapid adsorption of palladium, J. Hazard. Mater. 441, 129917. https://doi.org/10.1016/j.jhazmat.2022.129917.

[2] X. Bai, Y. Wang, H. Li, X. Tian, Y. Ma, J. Pan, 2021. Stalagmites in karst cave inspired construction: lotus root-type adsorbent with porous surface derived from CO2-in-water Pickering emulsion for selective and ultrafast uranium extraction, J. Hazard. Mater. 419, 126398. https://doi.org/10.1016/j.jhazmat.2021.126398.

[3] J.L. Tang, J.L. Zhao, S.X. Wang, L.B. Zhang, M.H. Zhao, Z. Huang, Y.T. Hu, 2021. Premodification strategy to prepare a novel Zr-based MOF for selective adsorption of Palladium(II) from solution, Chem. Eng. J. 407, 127223. https://doi.org/10.1016/j.cej.2020.127223.