Coke Relocation and Mo Immobilization in Donut-Shaped Mo/HZSM-5 Catalysts for Methane Dehydroaromatization

Ming Cheng^{a,†}, Hugo Cruchade^{b,†}, Ludovic Pinard^b, Eddy Dib^b, Honghai Liu^c, Jiujiang Wang^c, Xinmei Liu^a, Zi-Feng Yan^a, Zhengxing Qin^a*, Svetlana Mintova^b*

^aState Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, China, 266580.

^bLaboratoire Catalyse et Spectrochimie, Normandie Univ, ENSICAEN, UNICAEN, CNRS, 6 Bd Marchal Juin, Caen, France, 14000.

^cPetrochemical Research Institute, PetroChina Company Limited, Beijing 100195, P. R. China [†]Equally contributed

*Corresponding authors: zhengxing.qin@upc.edu.cn; svetlana.mintova@ensicaen.fr

Figure SI.1. XRD patterns of Silicalite-1 seeds.

Figure SI.2. XRD patterns of [Mo]-Z_P, [Mo]-Z_F, [Mo]-Z_{OH} zeolite catalysts.

Figure SI.3. SEM images of Z_P , Z_F , and Z_{OH} zeolite catalysts.

Figure SI.4. BJH pore size distribution of [Mo]-ZP, [Mo]-ZF, [Mo]-ZOH zeolite catalysts (adsorption branches).

Figure SI.5. Methane conversion as a function of time on stream on [Mo]-Z_P (\blacksquare) compared to a 3wt.%Mo/ZSM-5 (Si/Al = 40) catalyst reported in the literature¹.

Figure SI.6. (A) Benzene formation rate and (B) logarithm of benzene formation rate as a function of time on stream on [Mo]-Z_P, [Mo]-Z_F and [Mo]-Z_{OH} catalysts.

Determination of cokes distribution

[Mo]-Z_{P-Spent}, assumption: coke only in the micropores

Total coke content: 9.3 wt.%

Loss of microporous volume $\binom{V_{[Mo] - Z_{p-Spent}}}{2}: 0.07 \text{ cm}^3 \text{ g}^{-1}$

The coke molecules are mainly pyrene ($\rho_{Pyrene} = 1.27 \text{ g cm}^{-3}$) and benzopyrene ($\rho_{Benzopyrene} = 1.24 \text{ g cm}^{-3}$)².

The volume occupied by pyrene molecules (V_{Pyrene}) can be estimated as follow based on 1 g of catalyst:

$$V_{Pyrene} = \rho_{Pyrene} \times V_{[Mo] - Z_{P-Spent}}^{Micro, loss} = 1.27 \times 0.07 = 0.089 g$$

For 1 g of catalyst, the coke content measured by TGA (0.093 g) is close to the volume occupied by pyrene molecules (0.089 g).

[Mo]-Z_{F-Spent}, assumption: coke in the micropores and macropores

Total coke content $\binom{Coke_{[Mo]} - Z_{F-Spent}}{2}$: 7.7 wt.%

Loss of microporous volume $\binom{V_{[Mo]-Z_{F-Spent}}^{Micro, loss}}{0.03 \text{ cm}^3 \text{ g}^{-1}}$

Based on the linear relationship between coke content and loss of microporous volume³, the amount in the micropores ($Coke_{[Mo]} - Z_{F} - Spent$) can be estimated as follow:

$$Coke_{[Mo] - Z_{F} - Spent} = \frac{V_{[Mo] - Z_{F} - Spent}^{Micro, loss}}{V_{[Mo] - Z_{P} - Spent}} \times Coke_{[Mo] - Z_{P} - Spent}^{Micro}$$

For 1 g of catalyst, the $Coke_{[Mo]-Z_{F-Spent}}^{Micro}$ is:

$$Coke_{[Mo] - Z_{F-Spent}} = \frac{0.03}{0.07} \times 0.093 = 0.04 g$$

From coke balance, the amount of coke located in the macropores $\binom{Coke_{[Mo]}-Z_{F-Spent}}{Coke_{[Mo]}-Z_{F-Spent}}$ is assessed to be 0.037 g for 1 g of catalyst, according to the following equation:

 $Coke_{[Mo]-Z_{F-Spent}} = Coke_{[Mo]-Z_{F-Spent}} - Coke_{[Mo]-Z_{F-Spent}} = 0.077 - 0.04 = 0.037 g$

[Mo]-Z_{OH-Spent}, assumption: coke in the micropores, mesopores and macropores

Total coke content ($Coke_{[Mo]} - Z_{OH} - Spent$): 10.8 wt.%

Loss of microporous volume $\binom{V_{[Mo]-Z_{OH-Spent}}}{V_{[Mo]-Z_{OH-Spent}}}: 0.03 \text{ cm}^3 \text{ g}^{-1}$

The loss of microporous volume is similar to the [Mo]- $Z_{F-Spent}$ catalyst, thus the $Coke_{[Mo]-Z_{OH}-Spent}$ can be estimated to be 0.04 g for 1 g of catalyst.

By assuming a similar deposit in the macropores, as for the [Mo]- $Z_{F-Spent}$ catalyst, the $Coke_{[Mo]-Z_{OH}-Spent}$ can be estimated to be 0.037 g for 1 g of catalyst. From coke balance, the coke located in the additional mesoporosity ($Coke_{[Mo]-Z_{OH}-Spent}$) is assessed to be 0.031 g for 1 g of catalyst:

$$Coke_{[Mo] - Z_{OH - Spent}}^{Meso} = Coke_{[Mo] - Z_{OH - Spent}}^{Total} - Coke_{[Mo] - Z_{OH - Spent}}^{Micro} - Coke_{[Mo] - Z_{OH - Spent}}^{Macro} = 0.108 - 0.04 - 0.037$$

= 0.031 g

References

1 M. Rahman, A. Infantes-Molina, A. S. Hoffman, S. R. Bare, K. L. Emerson and S. J. Khatib, Fuel, 2020, 278, 118290.

A. Beuque, H. Hao, E. Berrier, N. Batalha, A. Sachse, J.-F. Paul and L. Pinard, *Appl. Catal. B: Environ.*, 2022, **309**, 121274.
N. Kosinov, E. A. Uslamin, F. J. A. G. Coumans, A. S. G. Wijpkema, R. Y. Rohling and E. J. M. Hensen, *ACS Catal.*, 2018, **8**, 8459–8467.