Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Liquid polybutadiene reinforced inverse vulcanised polymers

Veronica Hanna*^a, Michael Graysmark^b, Helen Willcock^b, and Tom Hasell*^a

^aDepartment of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK

^bDepartment of Materials, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK

Experimental

Materials

Sulfur (S₈, 325 mesh, \geq 99.5%, Brenntag UK & Ireland), 1,3-diisopropenylbenzene (DIB, Tokyo Chemical industry), dicyclopentadiene (DCPD, Tokyo Chemical industry), divinylbenzene (DVB, Sigma-Aldrich), liquid polybutadiene (cPBD, Sigma-Aldrich), grade B-1000 liquid polybutadiene (vPBD) was provided by Nisso, and grade LBR-302 liquid polybutadiene (KcPBD) was provided by Kuraray. All chemicals were used without further purification.

Characterisation

3-point bending tests were carried out using the Shimadzu EZ Test at a crosshead speed of 1 mm/min at 25 °C, with a span of 60 mm between the supports. Specimens were 15 mm wide, 4 mm thick and 100 mm long and were tested according to ISO 178.

Charpy impact tests were carried out using Zwick Roell HIT5P with a 1J hammer. The unnotched specimens were 10 mm wide, 4 mm thick and 80 mm long and were tested according to ISO 179-2.

Vickers hardness tests were carried out using Mitutoyo hardness testing system at room temperature with a 2 kg load (HV2) on specimens that were 10 mm wide, 5 mm thick and 55 mm long and were tested according to ISO 6507. Specimens were polished using sandpaper grits of P280, P400, P800, and P1200 to provide a smooth surface for the tests.

Differential scanning calorimetry (DSC) thermograms were obtained using TA DSC25, where heat-cool-heat cycles were carried out with temperature ranges of -50 - 150 °C for sulfur polymers, and -90 - 50 °C for LPBD under nitrogen. The heating rate was 10 °C/min and the cooling rate was 10 °C/min.

Fourier Transform Infrared Spectroscopy (FTIR) was performed with a Bruker Vertex V70 FTIR spectrometer, with a diamond ATR crystal. Polymers were analysed as sheets with a thickness of 0.1 - 0.5 mm, made using a hot press at 160 °C, 5 MPa for ~5 min.

Thermogravimetric analysis (TGA) was carried out using TA Instruments Discovery TGA550 with wire wound (Pt/Rh) furnace at a ramp rate of 10 °C/min to 600 °C, and for LPBD to 1000 °C under nitrogen purge gas.

Nuclear magnetic resonance (NMR) was carried out using Bruker Ultrashield 400MHz with samples at a concentration of 37 g/L. Chemical shifts were referenced to residual CHCl₃ (δ 7.26 ppm) in CDCl₃.

Size exclusion chromatography (SEC) was conducted using a Malvern Viscotek TDA 302 instrument equipped with a triple detector array TDA 305. SEC was performed at 35 °C at a flow rate of 1 mL min⁻¹ using THF as the mobile phase. Samples were analysed using a conventional calibration based upon linear poly(styrene) standards of Mp 1200, 2430, 5640, 12630 and 29100.

Scanning electron microscopy (SEM) imaging of the polymer morphology was achieved using a Hitachi S-4800 cold Field Emission Scanning Electron Microscope (FE-SEM) operating in both scanning and transmission modes. The dry samples were prepared by adhering the polymer monoliths to a SEM stub with silver paint. Samples were coated with a 5-10 nm thick layer of chromium by a Quorum sputter coater using a current of 120 mA. Imaging was conducted at a working distance of ~6 mm at 5 kV. Images were taken using a combination of both upper and lower detector signals.

Synthesis of S-DIB

Sulfur (5 g, 0.16 mol) and DIB (5 g, 0.031 mol) were added to a 40 mL reaction vial and heated at 160 °C in a heating block on a hot plate while stirring at 900 rpm. The mixture changed from yellow to a dark red viscous mixture after 30 min and was poured out into a silicone mould. The polymer was placed into the oven to cure at 140 °C for ~20 h. A black brittle polymer was produced.

Synthesis of S-DVB

Sulfur (5 g, 0.16 mol) and DVB (5 g, 0.038 mol) were added to a 40 mL reaction vial and heated at 160 °C in a heating block on a hot plate while stirring at 900 rpm. The mixture changed from yellow to a dark orange viscous mixture after 10 min and was poured out into a silicone mould. The polymer was placed into the oven to cure at 140 °C for ~20 h. A black brittle polymer was produced.

Synthesis of S-DCPD

Sulfur (40 g, 1.28 mol) and DCPD (40 g, 0.304 mol) were added to a 250 mL round bottom flask and heated at 160 °C in a heating block on a hot plate while stirring at 900 rpm. The mixture changed from yellow to a black viscous mixture after 1 h 30 min and was poured out into a silicone mould. The polymer was placed into the oven to cure at 140 °C for ~20 h. A black brittle polymer was produced.

Synthesis of S-DIB-PBD

Sulfur (5 g, 0.16 mol) and L-PBD were added to a 40 mL reaction vial and heated at 160 °C in heating block on a hot plate with stirring at 900 rpm. The mixture changed from a yellow to a viscous opaque ochre mixture after 15 min. DIB was added to the mixture and after 10-15 min, the viscosity increased and the colour changed to dark brown then it was poured out into a silicone mould. The polymer was placed into the oven to cure at 140 °C for ~20 h. A black opaque polymer was produced.

Mechanical test sample preparation

All S-DIB-PBD samples were hot pressed in metal moulds at 160 °C for approximately 20 - 30 min, S-DIB was hot pressed at 120 °C for 10-20 min, S-DVB was hot pressed at 160 °C for 10-20 min, and S-DCPD was used straight from the silicone mould after curing as the stress of the temperature change after hot pressing caused it to crack.

 Table S1 Sample compositions.

Sample abbreviation	Sulfur content (wt.%)	Crosslinker	Crosslinker content (wt.%)	LPBD	LPBD MW (g/mol)	LPBD content (wt.%)
cPBD	N/A	N/A	N/A	cis-1,4 Sigma LPBD	15413	100
vPBD	N/A	N/A	N/A	1,2-vinyl Nisso LPBD	3620	100
KcPBD	N/A	N/A	N/A	cis-1,4 Kuraray LPBD	5690	100
S-cPBD	50	N/A	N/A	cis-1,4 Sigma LPBD	15413	50
S-DIB	50	1,3-diisopropenylbenzene	50	N/A	N/A	N/A
S-DIB-10cPBD	50	1,3-diisopropenylbenzene	40	cis-1,4 Sigma LPBD	15413	10
S-DIB-20cPBD	50	1,3-diisopropenylbenzene	30	cis-1,4 Sigma LPBD	15413	20
S-DIB-30cPBD	50	1,3-diisopropenylbenzene	20	cis-1,4 Sigma LPBD	15413	30
S-DVB	50	divinylbenzene	50	N/A	N/A	N/A
S-DCPD	50	dicyclopentadiene	50	N/A	N/A	N/A

Fig. S1 Photo of S-DIB-20vPBD separation after addition of DIB.

Fig. S2 Photo of S-DIB-vPBD pre-polymer when Zn catalyst was used.

Fig. S3 Photos of S-DIB-cPBD pre-polymer a) when DIB is reacted before cPBD; b) when cPBD is reacted before DIB.

Fig. S4 Photos of a) vulcanised rubber and b) S-DIB-30cPBD; i) before hot pressing, ii) after hot pressing at 160 °C. Optical microscope images taken using 10x magnification lens iii) before hot pressing, iv) after hot pressing at 160 °C to show the recyclability of S-DIB-30cPBD by comparing it to a non-recyclable material.

Fig. S5 TGA curves of a) cPBD and b) S-cPBD to show the derivative weight to highlight the two-step degradation of cPBD that occurs.

Sample	$T_{\rm g}~(^{\rm o}{\rm C})$	Onset temperat	ure (°C) End temperature (°C)	Weight loss (%)
cPBD	-	414	467	99.7
S-cPBD	-	321	387	97.8
S-DIB	34	221	278	68.3
S-DIB-10cPBD	16	185	275	47.1
S-DIB-20cPBD	42	247	306	47.8
S-DIB-30cPBD	78	247	306	54.7

 Table S2 DSC and TGA values of different sulfur polymer samples.

Fig. S6 Bar chart of the flexural stress of S-DIB-30cPBD compared to other sulfur polymers.

Sample	Flexural Stress (MPa)	Flexural Modulus (MPa)	Stroke (mm)
S-DIB	3.93	1377	0.46
S-DIB-10cPBD	3.00	355	1.19
S-DIB-20cPBD	16.41	2152	1.09
S-DIB-30cPBD	30.00	1584	2.26
S-DVB	16.14	2402	0.83
S-DCPD	6.64	2156	0.56

 Table S3 3-point bending test results of different sulfur polymers.

 Table S4 Elemental analysis of sulfur polymers.

		-	
Sample	C (%)	H (%)	S (%)
S-DIB	43.32	4.11	51.45
S-DIB-10cPBD	42.77	4.23	52.1
S-DIB-20cPBD	41.85	4.4	51.86
S-DIB-30cPBD	42.27	4.66	52.26

Fig. S7 HNMR spectra of each type of LPBD compared to their corresponding S-LPBD pre-polymer. No change in spectra between the LPBD and S-LPBD for each type of LPBD indicates that once reaction with sulfur occurs, a sufficient amount of crosslinking occurs that S-LPBD becomes insoluble and that we are likley observing the unreacted LPBD in the spectra of S-LPBD samples.

Peak	Ret Time	Mn	Mw	Мр	Mw/Mn	RI Area
1	20.717	3,104	15,413	4,596	4.965	95.89

Fig. S8 SEC of cPBD.

 Peak
 Ret Time
 Mn
 Mw
 Mp
 Mw/Mn
 RI Area

 1
 21.073
 2,053
 3,620
 2,955
 1.763
 64.29

Fig. S9 SEC of vPBD.

Peak	Ret Time	Mn	Mw	Мр	Mw/Mn	RI Area
1	20.597	5,117	5,690	5,320	1.112	67.53

Fig. S10 SEC of KcPBD.