Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Electronic Supporting Information

Neutral d⁸ Metal Complexes with Intervalence Charge-Transfer Transition

Triggers Effective NIR-II Photothermal Conversion for Solar-Driven

Desalination

Yung-Cong Yang,^{†,#} Joanna S. Lin,^{†,#} and Jen-Shyang Ni[†]*

[†] Department of Chemical and Materials Engineering, Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan

[#] These authors contributed equally to this work

Scheme S1. The three coordination forms of neutral d^8 metal bis-dithiolene complexes. (M = Ni, Pd, Pt)

Scheme S2. The solar energy-to-vapor efficiency and water-mass evaporation rate of solar-thermal conversion materials based on small molecules.^[S1-S9]

Scheme S3. Synthetic routes of neutral d^8 transition-metal bis-dithiolene complexes. The "salt" is NiCl₂·6H₂O for NiPN, Na₂PdCl₄ for PdPN, and K₂PtCl₄ for PtPN, respectively.

Figure S2. The ¹³C-NMR spectrum of NiPN in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90

Chemical shift (ppm)

80 70 60

50 40

30 20 10

0

Figure S3. High-resolution mass spectrum of NiPN.

Figure S4. The ¹H-NMR spectrum of PdPN in CDCl₃.

Figure S5. The ¹³C-NMR spectrum of PdPN in CDCl₃.

Figure S6. High-resolution mass spectrum of PdPN.

Figure S7. The ¹H-NMR spectrum of PtPN in CDCl₃.

Figure S8. The ¹³C-NMR spectrum of PtPN in CDCl₃.

Figure S9. High-resolution mass spectrum of PtPN.

Figure S10. X-ray photoelectron spectroscopy (XPS) spectra of NiPN, PdPN, and PtPN powders.

Figure S11. (a, c, and e) Normalized UV-vis-NIR absorption and (b, d, and f) PL spectra of NiPN (a, b), PdPN (c, d), and PtPN (e, f), respectively, in the different solvents (10 μ M). The excitation wavelength is 808 nm. (Hex: hexane; Tol: toluene; EA: ethyl acetate; DCM: dichloromethane; DMF: dimethylformamide)

Figure S12. UV-vis-NIR absorption and PL spectra of NiPN with the different fractions of EtOH and hexane (f_{EtOH} , vol%) at a concentration of 10 μ M. The excitation wavelength is 808 nm.

Figure S13. UV-vis-NIR absorption and PL spectra of PdPN with the different fractions of EtOH and hexane (f_{EtOH} , vol%) at a concentration of 10 μ M. The excitation wavelength is 808 nm.

Figure S14. UV-vis-NIR absorption and PL spectra of PtPN with the different fractions of EtOH and hexane (f_{EtOH} , vol%) at a concentration of 10 μ M. The excitation wavelength is 808 nm.

Figure S15. Molecular geometries, orbitals with isovalue of 0.02 a.u., energy levels, and dihedral angles of NiPN in the ground (S_0) and excited (S_1) states, calculated with TD-DFT at the level of B3LYP/6-31G(d)/LANL2DZ.

Figure S16. Molecular geometries, orbitals with isovalue of 0.02 a.u., energy levels, and dihedral angles of PdPN in the ground (S_0) and excited (S_1) states, calculated with TD-DFT at the level of B3LYP/6-31G(d)/LANL2DZ.

Figure S17. Molecular geometries, orbitals with isovalue of 0.02 a.u., energy levels, and dihedral angles of PtPN in the ground (S_0) and excited (S_1) states, calculated with TD-DFT at the level of B3LYP/6-31G(d)/LANL2DZ.

Figure S18. PL spectra of NiPN-adsorbed filter papers under the excitation wavelength of 808 nm.

Figure S19. The time-dependent water contact angle (WCA) images of 1.25 mg of NiPN-loading filter papers.

Figure S20. The time-dependent WCA images of NiPN-loading filter papers with different amounts, 2.5, 5.0, 10.0, and 15.0 mg, respectively.

Figure S21. Camera photos of solar-driven evaporation device.

Figure S22. Infrared images of the solar-thermal interfacial-heating evaporation layers adsorbed with the different amounts of NiPN under 1 sun irradiation during time.

Figure S23. Time-dependent water-mass change curves using 2.5 mg of activated carbon-loading device under 1 sun irradiation.

Figure S24. Scanning electron microscope images of NiPN loading filter paper, i.e., NiNP-adsorbed evaporators.

Molecules	States	Configurations	E(eV)	λ (nm)	$f_{ m os}$
NiNP	S ₀₁	$H \rightarrow L (96\%)$	1.18	1050.05	0.565
	S ₀₂	H−7 → L+1 (3%), H−5 → L (12%),	1.52	818.26	0.002
		$H-2 \rightarrow L (83\%)$			
	S ₀₃	$H-6 \rightarrow L (3\%), H-1 \rightarrow L (91\%),$	1.56	796.62	0.000
_		$H \rightarrow L+1 (6\%)$			
PdNP	S ₀₁	$H \rightarrow L (96\%)$	1.13	1093.18	0.536
	S ₀₂	$H-6 \rightarrow L (4\%), H-1 \rightarrow L (92\%),$	1.52	818.24	0.000
		$H \rightarrow L+1 (4\%)$			
_	S ₀₃	$H-5 \rightarrow L (2\%), H-2 \rightarrow L (97\%)$	1.55	798.16	0.004
PtNP	S ₀₁	$H \rightarrow L (97\%)$	1.09	1136.01	0.563
	S ₀₂	$H-5 \rightarrow L (6\%), H-2 \rightarrow L (93\%)$	1.33	931.58	0.002
	S ₀₃	$H-1 \rightarrow L (98\%)$	1.42	875.25	0.000

Table S1. Calculation data of organometallic complexes in S₀ state.

* Calculated with TD-DFT at the level of B3LYP/6-31G(d)/LANL2DZ. S₀₁, S₀₂, and S₀₃ denoted the first, second, and third vertical transition from the S₀ state to the S₁, S₂, and S₃, respectively, and *f*_{os} denoted oscillator strength between the ground and excited states.

Table S2.	Calculation	data of	organometallic	complexes	in S ₀	state.
-----------	-------------	---------	----------------	-----------	-------------------	--------

Molecules	States	Configurations	E (eV)	λ (nm)	$f_{ m os}$
NiNP	\mathbf{S}_{10}	$H \rightarrow L (96\%)$	1.12	1111.46	0.534
PdNP	\mathbf{S}_{10}	$\mathrm{H} \rightarrow \mathrm{L} \ (96\%), \mathrm{H}6 \rightarrow \mathrm{L}\text{+}1 \ (2\%)$	1.09	1140.88	0.520
PtNP	\mathbf{S}_{10}	$H \rightarrow L (98\%)$	1.04	1187.31	0.536

Calculated with TD-DFT at the level of B3LYP/6-31G(d)/LANL2DZ. S_{10} denoted the first vertical transition from the S_1 to S_0 states, and f_{os} denoted oscillator strength between the ground and excited states.

Supporting References

- S1 Wang, D.; Qi, S.; Dong, J.; Wang, X.; Zhang, Y.; Zhou, S.; Gu, P.; Jia, T.; Zhang, Q., Org. Lett. 2023, 25, 5730-5734.
- S2 Cui, Y.; Liu, J.; Li, Z.; Ji, M.; Zhao, M.; Shen, M.; Han, X.; Jia, T.; Li, C.; Wang, Y., Adv. Funct. Mater. 2021, 31, 2106247.
- S3 Zhao, M.; Zhu, Y.; Pan, Y.; Wang, Y.; Xu, T.; Zhao, X.; Jia, T.; Zhang, Z.; Chen, Z., ACS Appl. Energy Mater. 2022, 5, 15758-15767.
- S4 Prakoso, S. P.; Sun, S. S.; Saleh, R.; Tao, Y. T.; Wang, C. L., ACS Appl. Mater. Interfaces 2021, 13, 38365-38374.
- S5 Li, H.; Wen, H.; Li, J.; Huang, J.; Wang, D.; Tang, B. Z., ACS Appl. Mater. Interfaces 2020, 12, 26033-26040.
- S6 Chen, G.; Sun, J.; Peng, Q.; Sun, Q.; Wang, G.; Cai, Y.; Gu, X.; Shuai, Z.; Tang, B. Z., Adv. Mater. 2020, 32, e1908537.
- S7 Zhang, X.; Li, Y.; Chen, Z.; Li, P.; Chen, R.; Peng, X., Dyes Pigm. 2021, 192, 109460.
- S8 Dai, J.; Qi, S.; Zhao, M.; Liu, J.; Jia, T.; Liu, G.; Liu, F.; Sun, P.; Li, B.; Wang, C.; Zhou, J.; Lu, G., *Chem. Eng. J.* **2023**, 471, 144745.
- S9 Zhang, R.; Jin, N.; Jia, T.; Wang, L.; Liu, J.; Nan, M.; Qi, S.; Liu, S.; Pan, Y., J. Mater. Chem. A 2023, 11, 15380-15388.