3D printed palladium/activated carbon-based catalysts for the dehydrogenation of formic acid as hydrogen carrier

Irene Díaz-Herrezuelo¹, Gonzalo Vega^{2*}, Marina Navarro², Pilar Miranzo¹, M. Isabel Osendi¹, Jose A. Casas², Asunción Quintanilla², Manuel Belmonte^{1*}

¹Institute of Ceramics and Glass (ICV-CSIC), Kelsen 5, 28049 Madrid, Spain

²Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid,

Spain

Table S1. Characterization of AC powders including specific surface area (S_{BET}), external area (A_{EXT}), pore volume (V_{PORE}), pore diameter (D_{PORE}) and elemental analysis.

$\mathbf{S}_{\mathrm{BET}}$	A_{EXT}	V _{PORE}	D _{PORE}	Carbon	Oxygen	Nitrogen	Sulphur
$(m^2 \cdot g^{-1})$	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	(nm)	(wt.%)	(wt.%)	(wt.%)	(wt.%)
738	514	0.098	3.53	87.6 ± 0.5	7.3 ± 0.3	< 0.16	0.34 ± 0.05

Figure S1. Weight loss (TGA) as a function of the temperature for the pristine AC powders and the as-printed 3D AC/B (70/30) structure.

Calculation of the gas produced upon reaction:

$$Q_{GAS}(mL min^{-1}) = Q_{He}(mL min^{-1}) \cdot dilution factor$$

 $dilution factor = \frac{D}{1 - D}$

$$D = \frac{\%H_{2GC} + \%CO_{2GC} + \%CO_{GC}}{100}$$

Figure S2. 3D AC/Al₂O₃ structure after placing the monolith into a beaker containing FA at 55 °C for 1 h and using mechanical stirring.

Figure S3. TEM images and particle size distribution (d_P) histograms of the 3D Pd/AC catalysts at T = 55 °C after the following uses: a,d) 1st use, b,e) 3rd use and c,f) 5th use.

Figure S4. TEM images and particle size distribution histograms (d_P) of the use 3D Pd/AC catalysts at T = 25 °C after the following uses: a,d) 1st use, b,e) 3rd use and c,f) 5th use.

Figure S5. XPS spectra of Pd 3d core level after different uses (1st, 3rd, 5th) of the 3D Pd/AC catalysts tested at 25 and 55 °C.

Figure S6. Performance of powdered and 3D Pd/AC catalyst in terms of: (a) X_{FA} , (b) Q_{GAS} produced and H_2/CO_2 ratio and (c) H_2 production per gram of Pd upon time-on-stream at $C_{FA,0} = 1$ M, $\tau = 160$ g_{CAT}·h·L⁻¹ and T = 55 °C.

The powdered 5 wt.% Pd/AC catalyst was prepared according to the following method: 3D AC monoliths were crushed and ground in an agate mortar and, then, 3 g of AC monolith powder (previously hydrated with 30 mL of Milli-Q water) were added to the PdCl₂ precursor solution at 65 °C. After 1 h of magnetic stirring, the temperature was increased to 95 °C and maintained until complete evaporation of water. The Pd impregnated powders were washed with Milli-Q water and oven dried at 60 °C overnight. Finally, they were reduced to remove the residual chlorides in a quartz tube under a H₂/N₂ stream (50/100 NmL·min⁻¹) at 250 °C for 2 h at a heating rate of 10 °C·min⁻¹.

Table S2. Main chemical characteristics of the 3D and powdered Pd/AC catalysts.

Fresh catalysts	Pd	Pd^{2+}/Pd^0	d _p	
	(wt.%)	(at.%)	(nm)	

3D Pd/AC	4.9	1.4	1.9 ± 0.4
Powdered Pd/AC	4.5	1.4	2.2 ± 0.8