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Reagents and Instruments:

Nickel Nitrate [Ni(NO3)2.6H2O], Vanadium Chloride [VCl3], Urea CO(NH2)2, Se 

powder, ammonium fluoride [NH4F], DMF, Hydrazine [N2H4] were purchased from Sigma-

Aldrich and used as received. Sodium carbonate (Na2CO3) was purchased from Merck and 

used as received. Ni foam was procured from Sigma-Aldrich and used after surface cleaning. 

The electrochemical analyzer AURT-M204 was used for all electrochemical characterizations. 

Hg/HgO reference electrode (in 1 M KOH) purchased from CH instruments and platinum (Pt) 

(for OER), and graphite rod (for HER) as counter electrodes from Alfa-Aesar were used 

throughout the electrochemical studies along with the Ni foam with materials grown as working 

electrodes. DI water was used throughout the entire experiment. The as-prepared catalysts with 

different stoichiometric ratios were characterized with HR-TEM, (TecnaiTM G2 TF20) 

working at an accelerating voltage of 200 kV and by Talos F-200-S with HAADF elemental 

mapping. Color mapping and Energy Dispersive X-ray Spectroscopy (EDS) analysis were 

carried out with the FESEM instrument with the images (SUPRA 55VP Carl zeiss) with a 

separate EDS detector connected to that instrument. The XRD analysis carried out with a 

scanning rate of 5° min-1 in the 2θ range 10-90° using a Rigaku X-ray powder diffractometer 

(XRD) with Cu Kα radiation (λ = 0.154 nm). X-ray photoelectron spectroscopic (XPS) analysis 

was performed using a Theta Probe AR-XPS system (Thermo Fisher Scientific, UK). The 

Bruker Tensor 27 (Optik GmbH, Germany) with an RT DLaTGS (Varian) detector was used 

for FT-IR analysis. LASER Raman spectroscopic measurements were carried out by green 

emitting semiconductor as a laser source of 532 nm. For Raman experiment the excitation light 

intensity is about approximately 10 mW with a spectral collection of time of 1 sec. The 

integration time for our measurement was set to be 10 s.
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Electrochemical Characterizations:

The electrochemical workstation AURT-M204 had been used for the entire total water 

splitting studies. Electrocatalytic studies were done with the conventional three-electrode 

system. For the OER experiment, we used Pt as a counter electrode and for HER graphite rod 

is used as counter electrode. The Hg/HgO electrode has been used as a reference electrode for 

OER and HER, the working electrode is the synthesized catalysts over Ni foam.  The 

polarization studies were carried out at a slow scan rate of 5 mV/sec. 50% iR compensation 

was done manually from the Rs from EIS. Continuous rapid sweeping through accelerated 

degradation (AD) studies at a very high sweep rate of 200 ms-1 for 500 cycles were Carried out 

in 1 M KOH for OER and also for HER. For handling the chemicals and glassware for the 

synthesis process as well as the application part, safety gloves, lab coats, and safety glass were 

mandatory and used accordingly. 

All the resulting potential data that were collected by taking Hg/HgO as a reference 

electrode were later converted with respect to the reversal hydrogen electrode (ERHE) by 

considering the Nernst equation of 

ERHE = Eref + 0.059×14 + 0.098………………Equation S1

Over potential (η) values of all the catalysts at benchmarking current density of 10 mA/cm2 

calculation has been done by following this equation 

η = ERHE - 1.23 V………………Equation S2

Tafel slope was calculated by fitting η vs log(j) using the Tafel equation 

η = b·log(j/j0) ………………Equation S3

where b represents the Tafel slope, j signifies the current density and j0 is the exchange current 

density. Electrochemical impedance spectroscopy (EIS) measurements were done on the 

frequency ranges from 105 to 1 Hz at 300 mV vs RHE. The value of electrochemical active 
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surface areas (ECSA) can be measured by determining the electrochemical double layer 

capacitance (Cdl) as follows:

ic=  × Cdl…………Equation S4

ECSA = ……… Equation S5

𝐶𝑑𝑙

𝐶𝑠

Where ic indicates the double-layer charging current resulting from scan-rates (ν) dependent 

CVs at non-faradic potential, Cs denotes a specific capacitance value of 0.040 mF/cm2 

depending on the typical reported values.

 All the electrodes have been fabricated by the conventional drop-casting method for 20 cycling 

in a slow scan rate in order to understand activity by means of decreasing onset potential value 

after Se doping. Typically, the catalyst ink was prepared by taking 3 mg of catalyst powder in 

a solution mixture containing 750 l of H2O, 200 l of ethanol, and 50 l of 5% Nafion 

solution. Then 34.5 ml of catalyst ink was drop-casted over carbon with an effective surface 

area of 1×0.5 cm2. 

Hence, loading is =  ~ 0.1045 mg of catalyst……… Equation S6
3 × 34.5

1000

 Determination of Surface concentration of various materials from the redox features 

of CV:

 Calculated area associated with the reduction of Ni3+ to Ni2+ of NiV LDH = 

0.003125VA

Hence, the associated charge is = 0.003125VA / 0.005 Vs-1

                                                   = 0.625 As 

                                                   = 0.625 C 

Now, the number of electrons transferred is = 0.625 C / 1.602 ×10-19 
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                                                                     = 3.9013×1018

Since the reduction of Ni3+ to Ni2+ is a single electron transfer reaction, the number of electrons 

calculated above is exactly the same as the number of surface-active sites. 

Hence, the number of Ni participating in OER is = 3.9013×1018

In our study, the determination of Turnover Frequency (TOF) from OER Current Density TOF 

was calculated assuming that the surface-active Ni atoms that had undergone the redox reaction 

just before the onset of OER only participated in OER electrocatalysis. The corresponding 

expression is, 

 TOF= j × NA / F × n × Г

Where, j = current density, NA = Avogadro number, F = Faraday constant, n = Number of 

electrons, Г = Surface concentration. 

Hence, for NiV LDH at 1.55V, we have the TOF value of

TOF1.55 V = [(46×10-3) (6.023× 1023)] / [(96485) (4) (3.9013×1018)]

= 0.0184 sec-1

 Similarly, we calculated the TOF value for the Se-NiV LDH and TOF1.55 V = 0.0359 sec-

1 

 In the case of HER reaction TOF was calculated by considering the area of the Cdl curve 

to calculate surface concentration value and the obtained TOF values at -0.213V for 

NiV LDH and Se-NiV LDH for HER 0.246 and 0.4618 s-1 respectively.
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Figure S1: (a) XRD pattern of Se-NiV LDH and NiV LDH over Ni foam from top 

to bottom respectively.

d
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Figure S2: (a-d) Low to high HR-TEM magnified images of NiV LDH. (e) Lattice fringes 

pattern of NiV LDH. (f)  SAED pattern of NiV LDH.
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Figure S3: (a) HAADF image of NiV LDH taken for mapping analysis, (b-f) are the 

characteristic colour mapping results of mix, Ni, V, O, and C of  NiV LDH respectively.
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Figure S4: (a) EDS spectrum of NiV LDH and Se-NiV LDH at HR-TEM mode.
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Figure S5: XPS survey spectrum of (a) NiV LDH; and (b) Se-NiV LDH.
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Figure S6: (a) Deconvoluted XPS spectrum of Se 3d orbitals of Se-NiV LDH.
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Figure S9: (a),(b) shows the CVs recorded for NiV LDH and Se-NiV LDH in a non-faradaic 

region at various scan rate for the determination of ECSA from its double layer capacitance 

in 1M KOH solution.
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Figure S11: (a) LSV curve of Acceleration degradation study (AD) of NiV LDH and Se-

NiV LDH for OER after 500 cycles. (b) The corresponding EIS spectra in 1M KOH 

electrolyte.
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Figure S12: (a) LSV curve of Acceleration degradation study (AD) of NiV LDH and Se-NiV 

LDH for HER after 500 cycles. (b) The corresponding EIS spectra in 1M KOH electrolyte.
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Figure S13: (a,b) Predicted Band structures of NiV LDH and Se-NiV LDH respectively 

near Fermi-energy level (c) Fermi energy level comparison for NiV LDH and Se-NiV LDH.
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Figure S14: (a-c) Low to high magnified FE-SEM images of post OER Se-NiV LDH. (d) 

EDS spectrum of post OER  Se-NiV LDH.
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Figure S15: (a) High magnified HRTEM  images of post OER Se-NiV LDH. (b)  SAED 

pattern of post OER Se-NiV LDH. (c) HAADF image of post OER Se-NiV LDH taken 

for mapping analysis. (d-i) are the corresponding characteristic colour mapping 

results of mix, Ni, V, Se, O, and C, respectively.
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Figure S16: (a) The deconvoluted post-XPS Survey spectra; (b) Deconvoluted post- 

OER XPS spectra of Ni 2p orbitals. (c) Deconvoluted post- OER XPS spectra of V 2p+O 

1s orbitals, and (d) Deconvoluted post- OER XPS spectrum of Se 3d orbitals of Se-NiV 

LDH.
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Figure S18: (a) FE-SEM image of post HER Se-NiV LDH. (b) EDS spectrum of post HER  Se-

NiV LDH. (c,d) HRTEM  image of post HER Se-NiV LDH. (e)  SAED pattern of post HER Se-

NiV LDH. (f) HAADF image of post HER Se-NiV LDH taken for mapping analysis. (g-l) are the 

corresponding characteristic colour mapping results of mix, Ni, V, Se, O, and C, respectively.
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Table S1: Comparison table for OER activity of Se-NiV LDH 
with similar type of catalyst.

SI. 
No

Catalyst Overpotential          
(mV)

Current 
density 
(mA/cm2)

Reference

1 Ni3V1Fe1 LDH 269 10 1

2 V-Ni3Se2 370 500 2

3 Ni3S2@NiV-
LDH/NF

190 10 3

4 NiS/VS 240 10 4

5 NiFeS/CoS 170 50 5

6 Ni0.8Fe0.2-m/t-
Se0.02-LDH

200 10 6

7 S-NiFe LDH 259 100 7

8 S-NiFe-LDH-A 270 50 8

9 NMS 280 10 9

10 Se-NiV LDH 198 50 This work



S26

Table S2: Comparison table for HER activity of Se-NiV LDH with 
similar type of catalyst.

SI.No Catalyst Overpotential          
(mV)

Current 
density 
(mA/cm2)

Reference

1 V-Ni3Se2 275 500 2

2 Ni3S2@NiV-
LDH/NF

126 10 3

3 NiS/VS 158 10 4

4 NiFeS/CoS 150 50 5

5 NiVRu-R 48 100 10

6 NF@NiFe-
LDH-1.5-4 

84 100 11

7  NiP1.93Se0.07 84 10 12

8 FeNi2Se4-
FeNi LDH

106 10 13

9 Se-NiV 
LDH

85 50 This work
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Table S3: Comparison table for total water splitting activity of Se-NiV LDH with 
similar type of catalyst.

SI. No Catalyst Potential 
(V)

Electrolyte Current 
density 
(mA/cm2)

Reference

1 V-Ni3Se2 1.56 1.0M KOH 10 2

2 Ni3S2@NiV-
LDH/NF

1.53 1.0M KOH 10 3

3 NiS/VS 1.64 1.0M KOH 10 4

4 NiFeS/CoS 1.81 1.0M KOH 50 5

5 FeNi2Se4-FeNi 
LDH

1.56 1.0M KOH 10 13

6 Co9S8-CoSe2 1.66 1.0M KOH 10 14

7 Se-NiV LDH 1.54 1.0M KOH 10 This work
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