Supporting Information

Nano-fibrillated Cellulose/Al(OH)₃/Polytetrafluoroethylene Hybrid Protective Layer Enabling Dendrite Free Zn Anodes for Rechargeable Aqueous Batteries

Mohammad Shayan¹, Ragab Abouzeid^{1,2}, Wangwang Xu^{1*}, Tongyao Wu³ and Qinglin Wu^{1*}

Fig. S1. TEM images of distributed Al(OH)₃ nanoparticles within NFC

Fig. S2. AFM images of NFC/Al(OH)₃/ PTFE protective layer's surface

Fig. S3. XRD pattern of separately prepared Al(OH)₃ nanoparticles and PTFE

Fig. S4. Cycling performance of symmetric cells with bare Zn, PTFE @Zn, NFC @Zn, and NFC/Al(OH)₃/PTFE @Zn at 2.5 mAcm⁻²

Fig. S5. (a) EIS spectra of symmetric batteries at different protective layer thicknesses. (b) the cycling stability of symmetric batteries at varying protective layer thicknesses with at a current density of 2.5 mA/cm^2 .

Fig. S6. Performance of Cu//Zn asymmetric cells tested at 1 mA/cm². a) coulombic efficiencies of the Cu//bare Zn asymmetric cells and b) Cu//NFC/Al(OH)₃/PTFE @Zn.

Fig. S7. Voltage profile of the Cu//NFC/Al(OH)₃/PTFE @Zn asymmetric batteries at $1mA/cm^2$ for the areal specific capacity of $1 mAh/cm^2$.

Fig. S8. Cycling stability of symmetric bare Zn and NFC/Al(OH)₃/PTFE@Zn batteries at 50° C and a current density of 2.5 mA/cm², 0.5 mAh/cm².