Supplementary Information

Low-Temperature Rapid UV Sintering of Sputtered TiO₂ for Flexible Perovskite Solar Modules

Yongseok Yoo^{a,b§}, Gabseok Seo^{c§}, Hee Jeong Park^{b,d§}, Jichan Kim^{b,e}, Jihun Jang^c, Woosum Cho^b, Ji Hwan Kim^{a,f}, Jooyeon Shin^g, Jiseong Choi^h, Donghyeon Leeⁱ, Se-Woong Baek^d, Sungkoo Lee^b, Seong Min Kang^{h*}, Min-cheol Kim^{i*}, Yung-Eun Sung^{a,f*}, and Seunghwan Bae^b

a. School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea

b. Green and Sustainable Materials R&D Department, Korea Institute of Industrial

Technology (KITECH), Cheonan 31056, Republic of Korea

c. Frontier Energy Solution Co., Ltd., Seoul National University, Seoul 08826, Republic of Korea

d. Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea

e. Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea

f. Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea

g. Advanced Photovoltaics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

h. Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

i. School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea

* Email: shbae83@kitech.re.kr, shbae83@kitech.re.kr, shbae83@kitech.re.kr, shbae83@kitech.re.kr, shbae83@kitech.re.kr, system:subsection-shbae83@kitech.re.kr, system:subsection-shbae83@kitech.re.kr, system:subsection-shbae84, system:subsection-shbae84, shbae83@kitech.re.kr, system:subsection-shbae84, system:subsection-shbae84, system:subsection-shbae84, system:subsection-shbae84, system:subsection-shbae84, system

Figure S1. STEM images and EDS data for s-TiO₂ film.

Figure S2. Transmittance spectra for FTO, s-TiO₂, RUS- s-TiO₂, and TS s-TiO₂ films.

Figure S3. (a) Band-alignment schematics; (b) secondary-electron cutoff region and (c) valence-band region of ultraviolet photoelectron spectra.

Figure S4. Box plots for photovoltaic parameters ((a) J_{SC} , (b) V_{OC} , (c) FF) with respect to the s-TiO₂ processing-gas composition (100:0, 100:0.5, and 100:1 for Ar:O₂).

Figure S5. IPCE spectra and the current density calculated via integration for the perovskite solar cells based on s-TiO₂, RUS-s-TiO₂, and TS-s-TiO₂ layers.

Figure S6. Comparison with leading PSCs using low-temperature-processed ETLs reported in the literature. The X-axis indicates the reciprocal of the process temperature.

Figure S7. Representative I–V curves for perovskite solar modules with (a) s-TiO₂ and (b) TS-s-TiO₂.

Figure S8. Comparison with leading large-area rigid-substrate PSC modules reported in the literature. The X-axis indicates the reciprocal of the process temperature.

Figure S9. Comparison with leading large-area flexible PSC modules reported in the literature. The X-axis indicates the reciprocal of the process temperature.

Figure S10. Box charts of photovoltaic parameters for s-TiO₂, RUS-s-TiO₂, TS-s-TiO₂ based PSCs.

Figure S11. SEM cross-sectional images of the perovskite film, which were coated on RUSs-TiO₂, colloidal SnO₂ and CBD SnO₂ at 85 °C and 65% humidity during 12h, respectively.

Element	(keV)	Mass %	Counts	Sigma	Atom%	K
O K	0.525	32.51	107492.89	0.18	59.04	1.2267
Ti K (Ref.)	4.508	67.49	273716.53	0.18	40.96	1.0000
Total		100.00			100.00	

Table S1. Mass and atomic ratios for the TEM and EDS data.

Table 52. Optical bandg	s-TiO ₂	RUS-s-TiO ₂	TS-s-TiO ₂
Bandgap $E_g(eV)$	3.18	3.21	3.16

Table S2. Optical bandgaps of each s-TiO₂ film.

Sample	Mobility (cm ² V ⁻¹ S ⁻¹) Trap-filled region	$V_{TFL}(V)$	Nt (cm ⁻³)
Previous work ²⁶	6.21 × 10 ⁻⁵		
s-TiO ₂	$1.5 imes 10^{-4}$	2.40	$5.97 imes 10^{18}$
RUS-s-TiO ₂	$1.8 imes 10^{-4}$	2.15	$5.35 imes 10^{18}$
TS-s-TiO ₂	2.2×10^{-4}	4.11	1.02×10^{19}

Table S3. Carrier mobility of each s-TiO₂ film.

Sample	Ti ⁴⁺ 2p _{3/2} [eV]	At [%]	Ti ³⁺ 2p _{3/2} [eV]	At [%]	Ti ⁴⁺ 2p _{1/2} [eV]	At [%]	$Ti^{3+}2p_{1/2}$ [eV]	At [%]
s-TiO ₂	459.28	45.98	458.29	5.50	464.98	32.93	460.89	15.59
RUS-s-TiO ₂	459.29	47.11	458.23	4.93	465.01	33.17	461.01	14.78
TS-s-TiO ₂	459.28	43.16	458.93	8.45	465.04	32.04	461.01	16.35

Table S4. Atomic ratios derived from Ti 2p XPS spectra.

Sample	t_1 (ns)	A ₁ (%)	t_1 (ns)	$A_{2}(\%)$	$t_{avg}\left(ns\right)$
Perovskite film	550.97	27.42	5784.1285	72.58	2483.71
s-TiO ₂	106.41	12.19	402.88	87.81	366.75
RUS-s-TiO ₂	85.5	11.21	336.06	88.79	307.96
TS-s-TiO ₂	90.31	6.97	361.78	93.03	342.87
		$\tau_{avg} = \sum_{i} \tau_{i} A$	$A_i / \sum_i A_i, \ y = y_0 + y$	$A_1 * exp\left(-\frac{x}{\tau_1}\right)$	$+A_2 * exp\left(-\frac{x}{\tau_2}\right)$

Table S5. Parameters of the TRPL spectra.

		71		
Sample	O 1s [eV]	At [%]	O 1s [eV]	At [%]
s-TiO ₂	530.55	67.31	532.23	32.69
RUS-s-TiO ₂	530.58	72.60	532.10	27.40
TS-s-TiO ₂	530.48	73.55	532.41	26.44

Table S6. Atomic ratios derived from O 1s X-ray photoelectron spectra.

Measu	irement	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
s-TiO ₂	Forward	1.125	24.49	81.27	22.38
	Reverse	1.099	24.88	75.11	20.54
TS-s- TiO ₂	Forward	1.137	26.08	81.39	24.14
	Reverse	1.113	26.00	80.40	23.27
RUS-s- TiO ₂	Forward	1.151	26.11	82.40	24.75
	Reverse	1.144	26.17	82.15	24.59

Table S7. Photovoltaic parameters for small-area PSCs with different s-TiO2 layers (s-TiO2,RUS-s-TiO2, and TS-s-TiO2).

substrates.								
Measurement		V _{oc} (V)	V _{oc} / cell	I _{sc} (mA)	J _{sc} (mA/cm ²)	$J_{sc} \times cell$	FF (%)	PCE (%)
RUS-s-	Forward	11.05	1.10	65.66	2.11	21.18	74.33	17.40
TiO ₂	Reverse	11.20	1.12	65.76	2.12	21.21	79.21	18.82
Flexible	Forward	9.82	0.98	1.95	19.58	9.82	69.38	13.35
RUS-s-TiO ₂	Reverse	10.23	1.02	1.95	19.58	10.23	72.93	14.61
	100,0150	10.23	1.02	1.75	17.50	10.23	12.75	1 1.01

Table S8. Photovoltaic parameters for perovskite solar modules with rigid and flexible substrates.

Measur	ement	V _{oc} (V)	V _{oc} / cell	I _{sc} (mA)	J _{sc} (mA/cm ²)	$J_{sc} \times cell$	FF (%)	PCE (%)
a TiO	Forward	9.56	0.95	65.61	2.11	21.16	75.35	15.26
s-110 ₂ -	Reverse	10.78	1.07	65.28	2.10	21.05	78.27	17.78
TS-s-TiO ₂ -	Forward	10.96	1.09	65.09	2.10	20.99	61.48	14.15
	Reverse	11.68	1.16	65.52	2.11	21.13	78.56	19.39

Table S9. Photovoltaic parameters for rigid-substrate perovskite solar modules with s-TiO₂ and TS-s-TiO₂.

REFERENCES

- L. Vesce, M. Stefanelli, L.A. Castriotta, A. Hadipour, S. Lammar, B. Yang, J. Suo, T. Aernouts, A. Hagfeldt, A.D. Carlo, *Solar RRL*, 2022, 6, 2101095.
- L. Gu, S. Wang, Y. Chen, Y. Xu, R. Li, D. Liu, X. Fang, X. Jia, N. Yuan, J. Ding, ACS Applied Energy Materials, 2021, 4, 6883–6891.
- L.A. Castriotta, F. Matteocci, L. Vesce, L. Cina, A. Agresti, S. Pescetelli, A. Ronconi, M. Löffler, M.M. Stylianakis, F. Di Giacomo et al., *ACS Applied materials* & interfaces, 2021, 13, 11741–11754.
- L. Vesce, M. Stefanelli, J.P. Herterich, L.A. Castriotta, M. Kohlstädt, U. Würfel, A.D. Carlo, *Solar RRL*, 2021, 5, 2100073.
- J. Chung, S.S. Shin, K. Hwang, G. Kim, K.W. Kim, D.S. Lee, W. Kim, B.S. Ma, Y.-K. Kim, T.-S. Kim, J. Seo, *Energy & Environmental Science*, 2021, 13, 4854.
- T. Bu, J. Li, F. Zheng, Z. Chen, X. Wen, Z. Ku, Y. Peng, J. Zhong, Y.-B. Cheng, F. Huang, *Nature Communication*, 2018, 9, 4609.
- M.J. Paik, Y. Lee, H.-S. Yun, S.-U. Lee, S.-T. Hong, S.I. Seok, *Advanced Energy Materials*, 2020, 20210, 2001799.
- M.J. Paik, J.W. Yoo, J. Park, E. Noh, H. Kim, S.-G. Ji, Y.Y. Kim, S.I. Seok, ACS Energy Letters, 2022, 7, 1864–1870.
- 9. M. Kam, Q. Zhang, D. Zhang, Z. Fan, *Scientific reports* 2019, 9, 6963.
- Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet, Z. Yang et al., *Nature Nanotechnology*, 2022, 17, 598–605.
- 11. J.W. Yoo, J. Jang, U. Kim, Y. Lee, S.-G. Ji, E. Noh, S. Hong, M. Choi, S.I. Seok, *Joule*, 2021, **5**, 2420–2424.
- 12. J.W. Yoo, E. Noh, J. Jang, K.S. Lee, J. Byeon, M. Choi, J. Im, S.I. Seok, *Joule*, 2023, 7, 797–798.
- 13. M. Jeong, I.W. Choi, K. Yim, S. Jeong et al., *Nature Photonics*, 2022, 16, 119–125.
- M.J. Kim, J. Jeong, H. Lu, F.T. Eickemeyer, Y. Liu et al., *Science*, 2022, 375, 302– 306.
- Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu, M. Jiang, G. Tong, Z. Wu, Y. Jiang, D.-Y.
 Son, Y. Dang, S. Kazaoui, Y. Qi, *Nature Energy*, 2020, 5, 596–604.
- Y. Li, Z. Chen, B. Yu, S. Tan, Y. Cui, H. Wu, Y. Luo, J. Shi, D. Li, Q. Meng, *Joule*, 2022, 6, 676–689.
- S. Zhang, R. Guo, H. Zeng, X. Liu, S. You, M. Li, L. Luo, M. Lira-Cantu, L. Li, F. Liu, X. Zheng, G. Liao, X. Li, *Energy & Environmental Science*, 2022, 15, 244.

- F. Shahvaranfard, N. Li, S. Hosseinpour, S. Hejazi, K. Zhang, M. Altomare, P. Schmuki, C.J. Brave, *Nano Select*, 2022, 3, 990–997.
- J. Kim, M. Kim, H. Kim, J. Yang, *Applied Science and Convergence Technology*, 2022, **31**, 116–119.
- 20. T. Hwang, S. Lee, J. Kim, J. Kim, C. Kim, B. Shin, B. Park, *Nano Research Letters*, 2017, **12**.
- 21. L. Qiu, Z. Liu, L.K. Ono, Y. Jiang, D.-Y. Son, Z. Hawash, Y. Qi, Advanced Functional Materials, 2019, 29, 1806779.
- G. Bai, Z. Wu, J. Li, T. Bu, W. Li, F. Huang, Q. Zhang, Y.-B. Cheng, J. Zhong, Solar Energy, 2019, 183, 306–314.
- Z. Fang, L. Yang, Y. Jing, K. Liu, H. Feng, B. Deng, L. Zheng, C. Cui, C. Tian, L. Xie, *Chinese Physics B*, 2022, **31**, 118801.
- 24. W. Sun, S. Wang, S. Li, X. Miao, Y. Zhu, C. Du, R. Ma, C. Wang, *Coatings*, 2019.
 9, 320.
- 25. H. Tao, Z. Ma, G. Yang, H. Wang, H. Long, H. Zhao, P. Qin, G. Fang, *Applied Surface Science*, 2018, **434**, 1336–1343.
- 26. M. Kam, Q. Zhang, D. Zhang, Z. Fan, *Scientific reports*, 2019, 9, 6963.