Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

1 Supporting information for

2	Industrial-Scale Efficient Alkaline Water Electrolysis Achieved with Sputtered NiFeV-
3	Oxide Thin-Film Electrodes for Green Hydrogen Production
4 5	Quoc-Nam Ha ^a , Chen-Hao Yeh ^b , Noto Susanto Gultom ^a , Dong-Hau Kuo ^{a,b,*}
6 7 8 9 10	 ^a Department of Materials Science and Engineering, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Road., Taipei 10607, Taiwan ^b Graduate Institute of Energy and Sustainability Technology, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Road., Taipei 10607, Taiwan
11 12	* Corresponding Author: <u>dhkuo@mail.ntust.edu.tw</u>
13	
14	
15	
16	
1 -	

19 Figure S1. (a) Fabrication procedure of NiFeV target by using our home-built hot press machine.
20 (b) SEM and EDS results of Ni, Fe, and V powder for target fabrication.

46 Figure S5. CV curves of (a) NiFe, (b) NFV-0.2, (c) NFV-0.5, (d) NFV-0.7, and (e) NFV-1 at

47 different scan rates.

55

Figure S7. SEM images of NFV-7 (a) before the stability test, (b) after HER, and (c) after OER. 56

500 nm

- 57
- 58

59

60 Figure S8. CV curves of NFV-0.7 (a) before and (b) after activation for 200 CV cycles.

Figure S9. High-resolution XPS spectra of (a) Ni 2p, (b) Fe 2p, (c) V 2p, and (d) O 1s of the postHER NFV-0.7 catalyst.

	A tomio(8/)			Ni:Fe:V ratio		
Catalyst		Atomic(7	(0)	Target	Film	
	Ni	Fe	V			
NiFe	59.3	40.7	-	1:1:0	1:0.68	
NFV-0.2	52.9	40.5	6.6	1:1:0.2	1:0.76:0.11	
NFV-0.5	47.1	42.7	10.2	1:1:0.5	1:0.95:0.23	
NFV-0.7	51.0	33.4	15.6	1:1:0.7	1:0.67:0.31	
NFV-1	39.9	37.5	22.6	1:1:1	1:0.94:0.56	

Table S1. Atomic percentage of metal elements of NFV-*n* thin films with various V ratios

Table S2. The comparison of electrocatalytic OER performance for NFV-0.7 in 1 MKOH with other NiFe-based reported in the literature

				Overpote	ntial (mV)		
No.	Catalyst	Method	@10 mA/cm ²	@100 mA/cm ²	@500 mA/cm ²	@1000 mA/cm ²	Ref
1	NiFeV	Sputtering	195	250	327	410	This work
2	O-GQD-NiFe P.B.A. 1:20	Sputtering	259				1
3	Niv(OH) ₂ /FeOOH	metal ion adsorption method	212	261			2
4	Ni ₃ Fe oxide	Hydrothermal synthesis at 550 °C for 4 h	291	356	447		3
5	Co(OH)2@NiFe/NF	two-step electrodeposition	191				4
6	NiFeOxHy- C/CNTs/CFP	one-step solvothermal method	202				5
7	Fe-NiS ₂ /NCNT	hydrothermal method		247			6
8	NiFe–NiFe ₂ O ₄ nanofibers	solution blow spinning	316				7
9	cRu-Ni ₃ N/NF	hydrothermal + nitrogenized		278			8
10	NiFeW ₃ -LDHs	immersion treatment	211	256			9
11	CS-NiFeCr/NF	Electrodeposition	220	280			10
12	NiFeZnP	hydrothermal deposition	203				11

				Overpote	ntial (mV)		
No.	Catalyst	Method	@-10 mA/cm ²	@-100 mA/cm ²	@-500 mA/cm ²	@-1000 mA/cm ²	Ref
1	NiFeV	Sputtering	-98	-317	-447	-512	This work
2	NiFeP@TiO _{2-x}	electrodeposition		-273			12
3	FeNi-HDNAs	hydrothermal for 2 h at 400 °C	-141				13
4	Fe–Ni ₂ P@PC/Cu _x S	hydrothermal at 60 °C for 20 h	-113				14
5	NiFe ₂ O ₄ /CoNi-S	Solvothermal + Eletrodeposition	-149				15
6	Ni(OH) ₂ @Ni ₂ Fe ₂ /NF- 60	electrodeposition		-220			16
7	NiFe _{EDTA}	hydrothermal at 180 °C for 12 h	-163				17
8	NiFeP@NiP@NF	hydrothermal synthesis	-105				18
9	Mo-doped CoFe LDH/NF	electrochemical transformation		-227	-408	-568	19
10	Co ₉ S ₈ @NiFe- LDH-200	electrosynthesis method	-145	-288			20
11	NiFe LDH/(NiFe)S _x /CMT	Hydrothermal at 120 °C for 1 h	-169				21
12	NiFe@C	Hydrothermal at 500 °C for 2 h	-195				22

Table S3. The comparison of electrocatalytic HER performance for NFV-0.7 in 1 MKOH with other NiFe-based reported in the literature

	Catalyst			Oper			
Electrolyte	Anode Cathode ^m OER. HER		AEM membrane	Cell voltage (V)	Current density (mA/cm²)	Temp. (°C)	Ref.
1 M KOH	NEV 07	NEV 0.7	FAA3-PK-	1.84	1000	60	This
ТМКОП	INF V-U./	INF V-U./	130	2.00	1000	25	work
1M KOH.	IrO ₂	Pt Black	PiperION	1.9	1000	50	23
0.5M KOH	IrO ₂	Pt/C	FAA3-PK-75	1.8	1000	90	24
1M NaOH	Ni ₂ Fe ₁	Ni ₉ Mo ₁ /C	TMA	1.8	906	60	25
Water	IrO _x	Pt/C	FAA-3	2.29	500	50	26
1М КОН	Ni/CeO ₂ - La ₂ O ₃ /C	CuCoO _x	A201	1.9	470	55	27
1 M KOH.	Co ₃ S ₄ /NF	Cu _{0.81} Co _{2.19} O ₄ NS/NF	X37-50	2	431	45	28
DI water	Ni-Fe	Ni-Mo	Quaternary ammonia polysulfone	1.8	400	70	29
D.I water	IrO ₂	Pt Black	A-201 Tokuyama	1.8	399	50	30
1М КОН.	Ni ₁₂ P ₅ / Ni ₃ (PO ₄) ₂ - HS	Ni ₁₂ P ₅ / Ni ₃ (PO ₄) ₂ -HS	Y.A.B., Foma	1.8	357.6	50	31
1M KOH.	CoP	CoP	YAB	1.85	335	50	32
DI water	Ni	Li _{0.21} Co _{2.79} O ₄	Cranfield	2.05	300	45	33
D.I water	Ni	CeO ₂ MnFe _{1.8} O ₄	FAA-3-PK- 130	1.8	300	25	34
0.5M KOH	IrO ₂	Pt/C	A-201, Tokuyama	1.8	299	50	35
1M KOH	Ni	Pt-Ni	A-201	1.9	250	50	36
0.1M KOH.	Ni/CeO ₂ - La ₂ O ₃ /C	CuCoO _x	Mg/Al LDH	2.2	208	70	37
1M KOH.	Ni	Cu _{0.7} Co _{2.3} O ₄	qPVB/OH-	2	100	55	38
10% K.O.H.	Ni	NiCo ₂ O ₄	qPPO	1.85	135	50	39
0.1M KOH.	Ni	Cu _{0.7} Co _{2.3} O ₄	Cranfield	1.9	100	55	40

 Table S4. The comparison of the electrocatalytic performance of NFV-0.7 for Overall water splitting with other AEM electrolysis reported in the literature

80 Faradaic efficiency (FE.)

$$FE H_2(\%) = \frac{n_{H_2} \times F \times 2}{j \times t} \times 100\%$$

$$FE O_2(\%) = \frac{n_{O_2} \times F \times 4}{j \times t} \times 100\%$$

83 where *n* is the amount of generated gas (mol), *F* is the Faradaic constant (96 485.3 s A /mol), *j* is 84 current density (A/cm²), and *t* is time (s).

85 Cell efficiency calculation

86 The electrocatalytic efficiency of our single stack cell was calculated according to the below
 87 equation ⁴¹:

$$Cell efficiency (\%) = \frac{H_2 power}{Electrolyzer power} \times 100\%$$

89 The following equation calculated the H_2 power:

90
$$H_2 power\left(\frac{W}{cm^2}\right) = hydrogen \ production \ rates\left(\frac{mol}{s.\ cm^2}\right) \ \times \ lower \ heating \ value \ (L.H.V.)$$

91 Theoretically, the hydrogen production rate at 1000 mA/cm² is approximately 5.18×10^{-6} 92 mol/s.cm². A lower heating value (LHV) of 242,000 J/mol was used for H₂ power output.

93 Then, the H_2 power output is 1.25 W/cm²

94 The following equation calculates the power of alkaline cell electrolysis:

Cell power
$$\left(\frac{W}{cm^2}\right) = cell voltage (V) \times current density (\frac{A}{cm2})$$

$$Cell power\left(\frac{W}{cm^2}\right) = 2.00 \times 1 = 2.00$$

98 Finally,

97

99

Cell efficiency (%) =
$$\frac{1.25}{2.00} X \, 100\% = 62.5\%$$

100 ≻ At 60 °C

$$Cell power\left(\frac{W}{cm^2}\right) = 1.84 \times 1 = 1.84$$

101 102 Finally,

103
$$Cell efficiency (\%) = \frac{1.25}{1.84} X \, 100\% = 67.9\%$$

105 References

- Y.-C. Lin, S. Aulia, M.-H. Yeh, L.-Y. Hsiao, A. M. Tarigan and K.-C. Ho, *Journal of Colloid and Interface Science*, 2023.
- F. Dong, H. Duan, Z. Lin, H. Yuan, M. Ju, X. Du, J. Gao, J. Yu and S. Yang, *Applied Catalysis B: Environmental*, 2023, 123242.
- 111 3. M. Yu, G. Moon, E. Bill and H. Tüysüz, ACS Applied Energy Materials, 2019, 2, 1199112 1209.
- H. Wang, Y. Yan, W. Zhang, S. Sun and S. Yao, *Journal of Solid State Chemistry*, 2023,
 323, 124048.
- Y. Qiao, Y. Pan, J. Zhang, B. Wang, T. Wu, W. Fan, Y. Cao, R. Mehmood, F. Zhang and
 F. Zhang, *Chinese Journal of Catalysis*, 2022, 43, 2354-2362.
- 117 6. X. Liu, X. Zhao, S. Cao, M. Xu, Y. Wang, W. Xue and J. Li, *Applied Catalysis B: Environmental*, 2023, **331**, 122715.
- R. A. Raimundo, V. D. Silva, E. S. Medeiros, D. A. Macedo, T. A. Simões, U. U. Gomes,
 M. A. Morales and R. M. Gomes, *Journal of Physics and Chemistry of Solids*, 2020, 139,
 109325.
- J. Zhu, R. Lu, W. Shi, L. Gong, D. Chen, P. Wang, L. Chen, J. Wu, S. Mu and Y. Zhao,
 Energy & Environmental Materials, 2023, 6, e12318.
- H. Li, C. Zhang, W. Xiang, M. A. Amin, J. Na, S. Wang, J. Yu and Y. Yamauchi, *Chemical Engineering Journal*, 2023, 452, 139104.
- 126 10. L. Fan, P. Zhang, B. Zhang, Q. Daniel, B. J. Timmer, F. Zhang and L. Sun, ACS Energy
 127 Letters, 2018, 3, 2865-2874.
- 128 11. C. Kou, J. Han, H. Wang, M. Han and H. Liang, *Progress in Natural Science: Materials International*, 2023, 33, 74-82.
- 130 12. K. Zhang, T. Wan, H. Wang, Y. Luo, Y. Shi, Z. Zhang, G. Liu and J. Li, *Journal of Colloid and Interface Science*, 2023, 645, 66-75.
- 132 13. N. Yu, W. Cao, M. Huttula, Y. Kayser, P. Hoenicke, B. Beckhoff, F. Lai, R. Dong, H.
 133 Sun and B. Geng, *Applied Catalysis B: Environmental*, 2020, **261**, 118193.
- 134 14. D. T. Tran, H. T. Le, N. H. Kim and J. H. Lee, *Nano Energy*, 2021, 84, 105861.
- 135 15. Y. Shi, X. Feng, H. Guan, J. Zhang and Z. Hu, *International Journal of Hydrogen Energy*,
 2021, 46, 8557-8566.
- 137 16. L. Zhang, T. Wang, H. Wu, H. Wang and F. Wang, *Journal of Alloys and Compounds*,
 138 2022, **918**, 165564.
- 139 17. M. Li, Y. Li, J. Wang and Q. Zhong, *Journal of Electroanalytical Chemistry*, 2022, 922, 140
 116764.
- 141 18. F. Diao, W. Huang, G. Ctistis, H. Wackerbarth, Y. Yang, P. Si, J. Zhang, X. Xiao and C.
 142 Engelbrekt, ACS Applied Materials & Interfaces, 2021, 13, 23702-23713.
- 143 19. G. Zhao, B. Wang, Q. Yan and X. Xia, *Journal of Alloys and Compounds*, 2022, 902, 144
 163738.
- Y. Lu, C. Liu, Y. Xing, Q. Xu, A. M. S. Hossain, D. Jiang, D. Li and J. Zhu, *Journal of Colloid and Interface Science*, 2021, **604**, 680-690.
- 147 21. Y. Zou, B. Xiao, J.-W. Shi, H. Hao, D. Ma, Y. Lv, G. Sun, J. Li and Y. Cheng,
- 148 *Electrochimica Acta*, 2020, **348**, 136339.

149	22.	SW. Park, I. Kim, SI. Oh, JC. Kim and DW. Kim, <i>Journal of Catalysis</i> , 2018, 366,
150		266-274.
151	23.	G. A. Lindquist, S. Z. Oener, R. Krivina, A. R. Motz, A. Keane, C. Capuano, K. E. Ayers
152		and S. W. Boettcher, ACS Applied Materials & Interfaces, 2021, 13, 51917-51924.
153	24.	A. Lim, Hj. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, YE. Sung, J. H.
154		Jang and H. S. Park, Journal of Industrial and Engineering Chemistry, 2019, 76, 410-418.
155	25.	D. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi and E. D.
156		Baca, <i>Nature Energy</i> , 2020, 5 , 378-385.
157	26.	D. Xu, M. B. Stevens, M. R. Cosby, S. Z. Oener, A. M. Smith, L. J. Enman, K. E. Ayers,
158		C. B. Capuano, J. N. Renner and N. Danilovic, ACS Catalysis, 2018, 9, 7-15.
159	27.	C. C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi and M.
160		Comotti, Angewandte Chemie International Edition, 2014, 53, 1378-1381.
161	28.	Y. S. Park, J. H. Lee, M. J. Jang, J. Jeong, S. M. Park, WS. Choi, Y. Kim, J. Yang and S.
162		M. Choi, International Journal of Hydrogen Energy, 2020, 45, 36-45.
163	29.	L. Xiao, S. Zhang, J. Pan, C. Yang, M. He, L. Zhuang and J. Lu, Energy &
164		Environmental Science, 2012, 5, 7869-7871.
165	30.	Y. Leng, G. Chen, A. J. Mendoza, T. B. Tighe, M. A. Hickner and CY. Wang, Journal
166		of the American Chemical Society, 2012, 134, 9054-9057.
167	31.	J. Chang, Q. Lv, G. Li, J. Ge, C. Liu and W. Xing, Applied Catalysis B: Environmental,
168		2017, 204 , 486-496.
169	32.	J. Chang, L. Liang, C. Li, M. Wang, J. Ge, C. Liu and W. Xing, Green Chemistry, 2016,
170		18 , 2287-2295.
171	33.	X. Wu and K. Scott, International journal of hydrogen energy, 2013, 38, 3123-3129.
172	34.	T. Pandiarajan, L. J. Berchmans and S. Ravichandran, RSC Advances, 2015, 5, 34100-
173		34108.
174	35.	M. K. Cho, HY. Park, H. J. Lee, HJ. Kim, A. Lim, D. Henkensmeier, S. J. Yoo, J. Y.
175		Kim, S. Y. Lee and H. S. Park, Journal of Power Sources, 2018, 382, 22-29.
176	36.	S. H. Ahn, S. J. Yoo, HJ. Kim, D. Henkensmeier, S. W. Nam, SK. Kim and J. H. Jang,
177		Applied Catalysis B: Environmental, 2016, 180, 674-679.
178	37.	L. Zeng and T. Zhao, <i>Nano Energy</i> , 2015, 11 , 110-118.
179	38.	YC. Cao, X. Wu and K. Scott, International journal of hydrogen energy, 2012, 37,
180		9524-9528.
181	39.	D. Chanda, J. Hnát, T. Bystron, M. Paidar and K. Bouzek, Journal of Power Sources,
182		2017, 347 , 247-258.
183	40.	X. Wu and K. Scott, Journal of Power Sources, 2012, 214, 124-129.
184	41.	Y. S. Park, J. Jeong, Y. Noh, M. J. Jang, J. Lee, K. H. Lee, D. C. Lim, M. H. Seo, W. B.
185		Kim, J. Yang and S. M. Choi, Applied Catalvsis B: Environmental, 2021, 292, 120170.
10.5		
100		