## Supporting Information

## Rational Design of Carbon/Potassium Poly(heptazine imide) Heterojunction for Enhanced Photocatalytic H<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> Evolution

*Christian Mark Pelicano*, \*<sup>a</sup> Jiaxin Li,<sup>a</sup> María Cabrero-Antonino,<sup>b</sup> Ingrid F. Silva, <sup>a</sup> Lu Peng, <sup>a</sup> Nadezda V. Tarakina, <sup>a</sup> Sergio Navalón,<sup>b</sup> Hermenegildo García, <sup>b</sup> and Markus Antonietti\*<sup>a</sup>

\*Corresponding authors

<sup>a</sup>Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany

E-mail: christianmark.pelicano@mpikg.mpg.de, markus.antonietti@mpikg.mpg.de

<sup>b</sup>Departamento de Química and Instituto de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, València 46022, Spain

## **Experimental Section**

## 1. Chemicals

All chemicals and solvents used were purchased from different chemical suppliers (Merck, Sigma-Aldrich, ) in high purity grade and were used as received. 5-aminotetrazole monohydrate was dried in a vacuum oven before using.

## 2. Catalyst Preparation

## Synthesis of Ad-carbon:

Typically, 1 g of adenine and 10 g of CsAc were placed in a nickel crucible with a lid and heated at 800 °C for 2 h (heating ramp: 1 °C min<sup>-1</sup>) under N<sub>2</sub> in a muffle furnace.<sup>1</sup> After cooling down, the carbonized products were ground and transferred to 1 M HCl aqueous solution, stirred overnight, and filtered by a Büchner funnel. The above procedures were repeated two times. The collected powders were then rinsed with deionised H<sub>2</sub>O and dried at 60 °C for 4 h to get the final carbon.

## Synthesis of carbon dots (CD):

3 g of citric acid and 1 g of urea were mixed in a 8 mL of deionised  $H_2O$  in a beaker and vigorously stirred until a transparent solution was obtained. Then the solution was placed inside a microwave oven and irradiated at 600 W for 10 min. The resulting solid product was then dried in an oven at 80 °C for 10 h to remove residual small molecules. The crude CD suspension was purified in a centrifuge at 8000 rpm for 1 h to remove large particles or agglomerates. The final brown aqueous solution was washed with a mixture of methanol and dichloromethane in ratios of 1:2 and 2:1. As a last step, the solution was dried to obtain the CD as a solid.<sup>2</sup>

### *Synthesis of 4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione (HPPT):*

2 g of citric acid and 3 g of urea were added to a large beaker and stirred at 120°C in an oil bath until everything is molten. The reaction mixture was reacted further at 120°C. It turned brown and increasingly solid. When it became completely solid, the product was ground and stirred for 24 h at 120°C in an oil bath.

## Synthesis of KPHI and carbon material/KPHI (CM/KPHI) hybrids:

Potassium poly(heptazine imide) (KPHI) was synthesized according to a previously reported study.<sup>3</sup> 2.5 g of 5-aminotetrazole and 12.5 g of KCl/LiCl eutectic (0.55/0.45 ratio) were placed in a steel ball mill vessel. The mixture was then ground at operational frequency of 25 Hz for 5 min. The resulting white powder was transferred into a porcelain crucible covered with a lid, and placed in a furnace. The temperature inside the furnace was increased to 600 °C within 4 h under a flow of N<sub>2</sub> gas (4 L min<sup>-1</sup>) and maintained this temperature for another 4 h. Subsequently, the furnace was allowed to naturally cool down to room temperature. The melt from the crucible was then transferred into a beaker with 300 mL deionized H<sub>2</sub>O and was stirred at room temperature overnight. Then the product was vacuum-filtered and washed extensively with H<sub>2</sub>O by centrifugation (5 x 2mL, 13 500 min<sup>-1</sup>, 3 min), and dried in a vacuum oven at 60 °C for 3 h. The preparation for CM/KPHI hybrids follows the same protocol except that the carbon materials were added along with 5-aminotetrazole and the eutectic salt template.

#### 3. Materials Characterizations

X-ray diffraction was conducted with a Rigaku SmartLab (Japan, Cu K, 0.154 nm). UV-vis absorption spectra were acquired using Shimadzu UV 2600 in diffuse reflectance mode. FTIR spectroscopy was performed using a Thermo Scientific Nicolet iD5 spectrometer with the attenuated total reflection sampling technique. Steady-state photoluminescence (PL) spectra were measured using a Jasco FP-8300 fluorescence spectrometer at an excitation wavelength of 365 nm. Time-resolved PL (TRPL) spectra were recorded on fluorescence lifetime spectrometer (FluoTime 250, PicoQuant) equipped with PDL 800-D picosecond pulsed diode laser drive. Elemental combustion analysis was performed with a vario MICRO cube CHNOS elemental analyzer (Elementar Analysensysteme GmbH). Inductively coupled plasma mass spectrometry (ICP-MS) was performed with a PerkinElmer ICP-OES Optima 8000. Transmission electron microscopy (TEM) images were taken using JEOL JEM F200 and a double Cs corrected JEOL JEM-ARM200F operated at 80kV and equipped with a cold-field emission gun and high-angle silicon drift Energy Dispersive X-ray (EDX) detector (Jeol JED-2300 100 mm<sup>2</sup>, Japan) (solid angle up to 0.98 steradians with a detection area of 100 mm<sup>2</sup>). Annular Dark Field Scanning Transmission Electron Microscopy (ADF - STEM) images were collected at a probe convergence semi-angle of 25 mrad. The morphologies of the samples were observed using a scanning electron microscope (SEM) (Zeiss LEO 1550-Gemini) equipped with an EDX (Oxford Instruments X-MAX). Nitrogen adsorption and desorption isotherms were measured at 77 K using a Quantachrome Quadrasorb SI apparatus. The samples were degassed at 150 °C under vacuum (0.5 Torr) for 20 h prior to each measurement. The specific surface area of each material was calculated from the adsorption branch data ( $P/P_0 <$ 0.3) using the Brunauer–Emmett–Teller (BET) method.

## 4. Photocatalytic Experiments

## Photocatalytic H<sub>2</sub> Evolution

Sacrificial photocatalytic H<sub>2</sub> evolution experiments were performed in a closed system equipped with a pressure detector to monitor the pressure build-up of the gases evolving during photocatalytic reactions. White LED (50 W,  $\lambda > 420$  nm), purple LED (50 W,  $\lambda = 410$  nm) and a green LED (50 W,  $\lambda = 535$  nm) were used as light source for the photocatalytic evaluation. A total volume of 38 mL was used and the temperature during the reaction was maintained at

295 K by a water circulator unit. Typically, 50 mg of photocatalyst powder was dispersed in a 38 mL mixture of DI H<sub>2</sub>O and TEOA with a volume ratio of 9:1, which was degassed beforehand to remove the dissolved O<sub>2</sub> in the solution. The reactor was then illuminated from the side for 6 h. 3 wt% of Pt cocatalyst was nominally photodeposited onto the photocatalysts using a K<sub>2</sub>PtCl<sub>4</sub> precursor. Finally, the amount of the evolved gas was calculated after 5 h (1st h was excluded) of irradiation according to the Clausius–Clapeyron relation (PV = nRT).

#### Photocatalytic H<sub>2</sub>O<sub>2</sub> Production

Sacrificial photocatalytic  $H_2O_2$  production experiments were performed in a 4 mL vial reactor. First, 5 mg of catalyst was dispersed in 2 mL of a 3.5% w/w glycerin aqueous solution then  $O_2$  gas was bubbled for 1 min. The reactor was then irradiated under stirring using two purple LED lamps (50 W each,  $\lambda = 410$  nm) for 1 h. The suspension was then centrifuged at 10 000 rpm for 10 min to separate the catalysts from the solution. The generated  $H_2O_2$  was quantified spectrophotometrically following the titanium oxalate method previously reported in the literature.<sup>4</sup> Basically, a 10 g L<sup>-1</sup> solution of K<sub>2</sub>[TiO(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>]·2H<sub>2</sub>O was prepared using 450 mL of water and 50 mL of sulfuric acid to avoid the complex precipitation. Subsequently, 3 mL of this reagent was mixed with 1 mL of the supernatant from the photocatalytic experiment. The resulting solutions, properly diluted when needed, were analyzed using the UV–vis spectrometer, collecting absorbance values at 400 nm. A calibration curve was made with external samples of known H<sub>2</sub>O<sub>2</sub> concentrations between 0-10 mmol L<sup>-1</sup> with a linear analytical response (R<sup>2</sup> = 0.99996).

#### Apparent Quantum Yield (AQY) Estimation

The AQY was measured using a monochromatic visible light ( $410 \pm 1.0$  nm). The AQY was obtained by the following equation:

$$AQY (\%) = \frac{2 \times r_{product} \times N_A \times hc}{I \times A \times \lambda} \times 100$$

where  $r_{product}$  is the production rate of H<sub>2</sub> or H<sub>2</sub>O<sub>2</sub> molecules (mol s<sup>-1</sup>) after the 1<sup>st</sup> hour of photocatalytic reaction,  $N_A$  is Avogadro constant (6.022 × 10<sup>23</sup> mol<sup>-1</sup>), h is the Planck constant (6.626 × 10<sup>-34</sup> J s<sup>-1</sup>) multiplied by c the speed of light (3 × 10<sup>8</sup> m s<sup>-1</sup>) giving (1.98644586 × 10<sup>-25</sup> J m), A is the irradiation area (cm<sup>2</sup>), I is the intensity of irradiation light (W cm<sup>-2</sup>), and  $\lambda$  is the wavelength of the monochromatic light (m).

#### 5. (Photo)electrochemical Tests

All (photo)electrochemical measurements were carried out in a three-electrode configuration, with a Pt coil and Ag/AgCl as counter and reference electrodes, respectively.

## *Electrocatalytic Hydrogen Evolution Reaction (HER) and Oxygen Reduction Reaction (ORR) Measurements*

The electrocatalysis experiments were conducted with a Gamry Interface 1010E potentiostat. To prepare the working electrode, F-doped tin oxide (FTO) glass (3 x 1 cm) substrates were cleaned sequentially with detergent, distilled H<sub>2</sub>O and ethanol for 10 min each to remove organic impurities. Half of the FTO area was protected with a Scotch tape. A catalyst ink was obtained by mixing 5 mg of photocatalyst powder, 0.5 mL of H<sub>2</sub>O and 20  $\mu$ L of 5 wt.% Nafion by sonication. Then, 50  $\mu$ L of catalyst slurry was pipetted onto the FTO electrode and dried at 65 °C and further heated at 120 °C for 1 h to improve adhesion. HER and ORR activities were measured in N<sub>2</sub>- and O<sub>2</sub>-saturated 0.2 M aqueous Na<sub>2</sub>SO<sub>4</sub> solution, respectively. All potentials described were given in reference to the reversible hydrogen electrode (RHE).

# Transient Photocurrent Response, Electrochemical Impedance Spectroscopy (EIS), and Mott-Schottky Analysis

The photocurrent response was measured (0.3 V vs. ref) under 100 mW cm<sup>-2</sup> white LED illumination in 0.2 M aqueous  $Na_2SO_4$  solution using a Gamry Interface 1010E potentiostat. For EIS, the same electrodes were used as described above and the measurements were done in a frequency range of 10 kHz to 1 Hz. The data were fitted to a full semicircle using ZView software. Mott–Schottky measurements were performed in a Biologic MPG-2 system at 10 kHz.



Figure S1. (A) XRD patterns and (B) FTIR spectra of Ad-carbon, CD and HPPT.



Figure S2. SEM images of various carbonaceous materials: (A) Ad-carbon, (B) CD, and (C) HPPT.



Figure S3. SEM images of (A) KPHI, (B) 0.3Ad/KPHI, (C) 0.3CD/KPHI and (D) 0.3HPPT/KPHI.

|                          | hybrids          |             |
|--------------------------|------------------|-------------|
| Sample                   | S <sub>BET</sub> | Pore Radius |
|                          | $(m^2 g^{-1})$   | (nm)        |
| Ad-carbon                | 3306             | 1.9         |
| CD                       | 1.5              | 1.7         |
| HPPT                     | 1.2              | 1.7         |
| KPHI                     | 86.4             | 1.9         |
| 0.3Ad/KPHI               | 79.7             | 1.9         |
| 0.3CD <sub>m</sub> /KPHI | 73.1             | 1.9         |
| 0.3HPPT/KPHI             | 52.9             | 1.9         |

Table S1. BET specific surface area and pore diameter size of CM, KPHI and CM/KPHI



Figure S4. (A)  $N_2$  adsorption/desorption isotherm at 77 K and (B) BJH pore size distribution from the  $N_2$  adsorption branch at 77 K of the KPHI and CM/KPHI hybrids.

Table S2. Chemical composition of KPHI and CM/KPHI hybrids\*

| Sample                   | N %                      | С %                                 | Н%                                                                                                                                                                                                      | C/N          | C/H          | K %    | Li % |  |
|--------------------------|--------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------|------|--|
|                          |                          |                                     |                                                                                                                                                                                                         | mass         | mass         |        |      |  |
| Samples                  | Light                    | t source                            | $\begin{array}{c} \text{Amount of catalyst} \\ \text{/Cocatalyst} \\ \end{array} \begin{array}{c} \text{HER rate} \\ \text{/\mu mol } h^{-1} \\ g_{cat}^{-1} \end{array} \\ \text{Referen} \end{array}$ |              | ence         |        |      |  |
| 0.3Ad/KPHI               | 50 W LED lamp (> 420 nm) |                                     | 50 mg/3 wt% Pt                                                                                                                                                                                          |              | 738          | This v | vork |  |
| KPHI                     | 300 W Xe la              | mp (> 420 nm)                       | 14-20                                                                                                                                                                                                   | mg/ 8 wt% Pt | 600          | 5      |      |  |
| CNB <sub>0.2</sub>       | 500 W HBO I              | 500 W HBO lamp (> 420 nm) 100 mg/ 3 |                                                                                                                                                                                                         | mg/ 3 wt% Pt | 300          | 6      |      |  |
| OCNA-6                   | 300 W Xe la              | mp (> 420 nm)                       | 25 1                                                                                                                                                                                                    | ng/3 wt% Pt  | 8 wt% Pt 663 |        | 7    |  |
| ONLH-600                 | 300 W Xe la              | mp (> 420 nm)                       | 30 mg/5 wt% Pt                                                                                                                                                                                          |              | 340          | 8      |      |  |
| P-TCN                    | 300 W Xe la              | 600 W Xe lamp (> 420 nm)            |                                                                                                                                                                                                         | mg/1 wt% Pt  | 670          | 9      |      |  |
| KPHI                     | 44.8                     | 27.7                                | 2.1                                                                                                                                                                                                     | 0.62         | 13.4         | 9.6    | 0.2  |  |
| 0.3Ad/KPHI               | 45                       | 27.7                                | 2.2                                                                                                                                                                                                     | 0.62         | 12.8         | 9.6    | 0.2  |  |
| 0.3CD <sub>m</sub> /KPHI | 44.8                     | 28                                  | 2.2                                                                                                                                                                                                     | 0.62         | 12.6         | 11.1   | 0.2  |  |
| 0.3HPPT/KPHI             | 1 45                     | 27.5                                | 2.1                                                                                                                                                                                                     | 0.61         | 12.9         | 9.9    | 0.2  |  |

\*Mass percentages of N, C and H elements were measured using combustion analysis while inductively coupled plasma optical emission spectrometry (ICP-OES) was used for determining the mass percentages of K and Li.

 Table S3. Comparison of H2 evolution rates of different carbon nitride-based photocatalysts

 reported in the literature

| HTCN-500  | 350 W Xe lamp            | 20 mg/3 wt% Pt | 890  | 10 |
|-----------|--------------------------|----------------|------|----|
| PTYS CN-2 | 300 W Xe lamp (> 420 nm) | 50 mg/1 wt% Pt | 740  | 11 |
| PCNT-3    | 300 W Xe lamp (> 420 nm) | 50 mg/3 wt% Pt | 2020 | 12 |
| CN-NaK    | 50 W LED lamp (> 420 nm) | 50 mg/3 wt% Pt | 5560 | 13 |



Figure S5. Photocatalytic H<sub>2</sub> evolution rates of pure KPHI and 0.3Ad/KPHI (A) without and (B) with 3 wt% Pt cocatalyst. (C) Photocatalytic H<sub>2</sub> evolution rate of a simple mixture of Adcarbon and KPHI. Reaction conditions: catalyst, 50 mg; solution, 38 mL H<sub>2</sub>O (10 vol% TEOA); light source, white LED ( $\lambda > 420$  nm). By considering that ~150 mg of 0.3Ad/KPHI photocatalyst powder is produced from one-step salt-melt assisted condensation of 0.3 mg Ad

with 1 g 5-aminotetrazole and assuming that all of Ad-carbon remained in the sample after washing, the physically mixed sample was prepared by grinding 0.3 mg of Ad-carbon with 150 mg of pure KPHI with an agate mortar and pestle.



Figure S6. XRD patterns of Ad/KPHI hybrid with 0.1, 0.5 and 1 mg of Ad-carbon vs 1 g of 5aminotetrazole.



Figure S7. (A) XRD patterns and (B) FTIR spectra of 0.3Ad/KPHI before and after H<sub>2</sub> evolution recyclability tests.



| Catalysts  | Light source                | Sacrificial electron<br>donor | $\begin{array}{c} H_2O_2 \text{ rate} \\ /mmol  h^{-1} \\ g_{cat}{}^{-1} \end{array}$ | Volume<br>(mL) | Reference |
|------------|-----------------------------|-------------------------------|---------------------------------------------------------------------------------------|----------------|-----------|
| 0.3Ad/KPHI | 100 W LED lamp (410<br>nm)  | Glycerin                      | 3.94                                                                                  | 2              | This work |
| H-PHI      | 100 W LED lamp (410 nm)     | Glycerin                      | 3.11                                                                                  | 2              | 14        |
| КРНІ       | 100 W LED lamp (410<br>nm)  | Glycerin                      | 3.02                                                                                  | 2              | This work |
| Na-PHI     | 100 W LED lamp (410 nm)     | Glycerin                      | 2.15                                                                                  | 2              | 14        |
| O/K-CN     | 300 W Xe lamp (> 420<br>nm) | 2-Propanol                    | 15.45                                                                                 | 50             | 15        |
| ACNN       | 300 W Xe lamp (> 420<br>nm) | 2-Propanol                    | 10.2                                                                                  | 50             | 16        |
| OCN/NBS    | Xe lamp                     | 2-Propanol                    | 4.46                                                                                  | 50             | 17        |

Figure S8.Time course of the photocatalytic H<sub>2</sub> evolution rates of pure KPHI and 0.3Ad/KPHI in the long-term durability test. Reaction conditions: catalyst, 50 mg; solution, 38 mL H<sub>2</sub>O (10 vol% TEOA); cocatalyst, 3 wt% Pt; light source, white LED ( $\lambda > 420$  nm).

Table S4. Comparison of  $H_2O_2$  production rates of different carbon nitride-based photocatalysts reported in the literature

| TiO <sub>2</sub>              | 450 W high pressure Hg<br>lamp (> 280 nm)  | Benzyl alcohol | 0.33 | 5  | 18 |
|-------------------------------|--------------------------------------------|----------------|------|----|----|
| $Cd_{3}(C_{3}N_{3}S_{3})_{2}$ | 300 W Xe lamp (> 420<br>nm)                | Methanol       | 0.55 | 20 | 19 |
| PCN-NaCA-2                    | 100 mW cm <sup>-2</sup> Solar<br>simulator | Glycerin       | 18.7 | 50 | 20 |
| CNK-0.8                       | 30.7 mW cm <sup>-2</sup> LED light         | Ethanol        | 4.43 | 5  | 21 |
| C-P-CN                        | 300 W Xe lamp (> 400<br>nm)                | Ethanol        | 3.32 | 50 | 22 |



Figure S10. Mott-Schottky plots of KPHI and 0.3Ad/KPHI.



| Figure S11. | . Time-resolved  | transient PL  | decay | curves | of KPHI | and | 0.3Ad/KPHI | in | aqueous |
|-------------|------------------|---------------|-------|--------|---------|-----|------------|----|---------|
| suspensions | s under differen | t conditions. |       |        |         |     |            |    |         |

| Sample                      | $A_1$ | $\tau_{1 (ns)}$ | <i>A</i> <sub>2</sub> | $\tau_{2}$ (ns) | A <sub>3</sub> | $\tau_{3 (ns)}$ | τ <sub>ave</sub><br>(ns) | Purged<br>Gas |
|-----------------------------|-------|-----------------|-----------------------|-----------------|----------------|-----------------|--------------------------|---------------|
| KPHI-H <sub>2</sub> O       | 16.98 | 0.15            | 1.54                  | 4.11            | 6.92           | 0.83            | 2.14                     |               |
| KPHI-TEOA                   | 26.7  | 0.10            | 1.07                  | 4.17            | 6.56           | 0.69            | 1.87                     |               |
| KPHI/Pt-TEOA                | 44.6  | 0.07            | 0.71                  | 4.61            | 4.69           | 0.60            | 1.81                     | <b>A</b>      |
| 0.3Ad/KPHI-H <sub>2</sub> O | 19.6  | 0.13            | 1.37                  | 3.97            | 7.05           | 0.77            | 1.94                     | Ar            |
| 0.3Ad/KPHI-TEOA             | 37.4  | 0.08            | 0.84                  | 4.30            | 5.84           | 0.63            | 1.75                     |               |
| 0.3Ad/KPHI/Pt-TEOA          | 42.7  | 0.08            | 0.57                  | 4.18            | 4.26           | 0.63            | 1.40                     |               |
| KPHI-H <sub>2</sub> O       | 15.5  | 0.15            | 1.84                  | 3.67            | 7.34           | 0.87            | 1.99                     |               |
| KPHI-glycerine              | 12.34 | 0.14            | 3.11                  | 4.28            | 6.96           | 0.94            | 2.93                     | 0.            |
| 0.3Ad/KPHI-H <sub>2</sub> O | 18.77 | 0.14            | 1.35                  | 4.03            | 6.73           | 0.84            | 1.96                     | 02            |
| 0.3Ad/KPHI-glycerine        | 17.18 | 0.12            | 2.22                  | 3.94            | 7.1            | 0.80            | 2.37                     |               |

Table S5. PL lifetime values of KPHI and 0.3Ad/KPHI in aqueous suspension under different experimental conditions.



Figure S12. Schematic illustration of photocatalytic  $H_2$  and  $H_2O_2$  evolution over the 0.3Ad/KPHI hybrid photocatalyst system.



Figure S13. Transient photocurrent (applied potential 0.3 V) for KPHI and 0.3Ad/KPHI in 0.2 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution under (A) green and (B) red LED illumination.



Figure S14. Additional BF- and HAADF-STEM images showing various random areas of 3Ad/KPHI hybrid sample (Ad-carbon concentration is increased by 10x to easily locate the heterostructure).



Figure S15. Additional HAADF-STEM images of (A) KPHI and (B) 0.3Ad/KPHI hybrid sample. (C) STEM-EDX elemental mapping images of (B).

References

1. J. Li, J. Kossmann, K. Zeng, K. Zhang, B. Wang, C. Weinberger, M. Antonietti, M. Odziomek and N. López-Salas, *Angew. Chem. Int. Ed.* 2023, e202217808.

2. Y. Wang, X. Liu, X. Han, R. Godin, J. Chen, W. Zhou, C. Jiang, J. F. Thompson, K. B. Mustafa, S. A. Shevlin, J. R. Durrant, Z. Guo and J. Tang, *Nat. Commun.*, 2020, **11**, 2531.

3. A. Savateev, D. Dontsova, B. Kurpil and M. Antonietti, J. Catal., 2017, 350, 203-211.

4. R. M. Sellers Analyst, 1980, 105, 950-954.

5. H. Schlomberg, J. Kröger, G. Savasci, M. W. Terban, S. Bette, I. Moudrakovski, V. Duppel, F. Podjaski, R. Siegel, J. Senker, R. E. Dinnebier, C. Ochsenfeld and B. V. Lotsch, *Chem. Mater.* **2019**, 31 (18), 7478–7486.

6. J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Fu, M. Antonietti and X. Wang, *Angew. Chem. Int. Ed.*, **2010**, 49 (2), 441–444.

7. W. Jiang, Q. Ruan, J. Xie, X. Chen, Y. Zhu and J. Tang, *Appl. Catal. B: Environ.* **2018**, *236*, 428–435.

8. Y. Wang, M. K. Bayazit, S. J. A. Moniz, Q. Ruan and J. Tang, *Energ. Environ. Sci.* 2017, 10, 1643-1651.

9. S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan and H. Fu, *Angew. Chem. Int. Ed. Engl.* 2016, 55, 1830–1834.

10. Y. Li, F. Gong, Q. Zhou, X. Feng, J. Fan and Q. Xiang, *Appl. Catal. B: Environ.* **2020**, *268*, 118381

11. N. Tian, K. Xiao, Y. Zhang, X. Lu, L. Ye, P. Gao, T. Ma and H. Huang, *Appl. Catal. B: Environ.* **2019**, *253*, 196–205.

12. M. Wu, J. Zhang, B.-b. He, H.-w. Wang, R. Wang and Y.-s. Gong, *Appl. Catal. B: Environ.* **2019**, *241*, 159–166.

13. G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang and M. Antonietti, *Angew. Chem. Int. Ed. Engl.* **2018**, *57*, 9372–9376.

14. A. Rogolino, I. Silva, N. Tarakina, M. da Silva, G. Rocha, M. Antonietti and I. Teixeira, *ACS Appl. Mater. Interfaces*, 2022, **14**, 44, 49820–49829.

15. W. Liu, P. Wang, J. Chen, X. Gao, H. Che, B. Liu, Y. Ao, Adv. Funct. Mater. 2022, 32, 2205119.

16. S. Wu, H. Yu, S. Chen and X. Quan, ACS Catal., 2020, 10, 14380–14389.

17. F. Farzin, M. K. Rofouei, M. Mousavi, Ja. B. Ghasemi, J. Phys. Chem. Solids 2022, 163, 110588.

18. Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano and T. Hirai, *ACS Catal.*, 2013, **3**, 2222–2227.

19. H. Zhuang, L. Yang, J. Xu, F. Li, Z. Zhang, H. Lin, J. Long, X. Wang, Sci. Rep. 2015, 5, 16947.

20. Y. Zhao, P. Zhang, Z. Yang, L. Li, J. Gao, S. Chen, T. Xie, C. Diao, S. Xi, B. Xiao, C. Hu and W. Choi, *Nat. Commun.*, 2021, **12**, 3701.

21. Z. Li, Y. Chen, X. Chen, L. Li, S. Kuang, Y. Guo, Y. Wang, J. Gao, *Appl. Surf. Sci.* 2023, **609**, 155432.

22. W. Wei, L. Zou, J. Li, F. Hou, Z.Sheng, Y. Li, Z. Guo, and A. Wei, *J. Colloid Interface Sci.*, 2023, **636**, 537–548.