Supplementary Information (SI)

Regulating the Kinetic Behaviors of Polysulfides by Designing an Au-COF Interface in Lithium-Sulfur Batteries

Chan Li, Ke Yang, Zelin Ma, Fei Zhao, Juan Li, Xinwu Xu, Xiaoyu Hao, Haoyuan Qi, Yibo He^{*}

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Youyi Road 127#, Xi'an 710072, Shaanxi, P. R. China.

*Corresponding author. E-mail: heyibo@nwpu.edu.cn

Fig. S1 Synthetic scheme of the NUS-2.

Fig. S2 SEM images of NUS-2 powder at different magnifications.

Fig. S3 TEM images of NUS-2 powder at different magnifications.

Fig. S4 TEM and corresponding elemental mapping images of NUS-2 powder.

Fig. S5 TEM image of Au NPs.

Fig. S6 TEM images of Au-COF at different magnification.

Fig. S7 Zeta Potential of various materials.

Fig. S8 SEM and corresponding elemental mapping images of Au-COF/rGO powder.

Fig. S9 TEM and corresponding elemental mapping images of Au-COF/rGO powder.

Fig. S10 Photographs of static liquid electrolyte contact angles of different separators at different rest time. 1 M LiTFSI with 2 wt% $LiNO_3$ in DOL/DME (v/v=1:1) was used as a liquid electrolyte.

Fig. S11 Li ion conductivity of symmetric cells with various separators.

Fig. S12 Permeation experiments. Digital photographs of H-type devices with original PP separator and Au-COF/rGO coated PP separator. The inside of left chamber is Li_2S_6 in DOL/DME (v/v=1:1) solution, while the inside of right chamber is the pure DOL/DME (v/v=1:1) solvent.

Fig. S13 CV curves at different scan rates and the corresponding linear fits of the peak current of the cells with the (a, b) rGO and (c, d) COF/rGO separators.

Fig. S14 EIS curves of Au-COF/rGO, COF/rGO and rGO symmetry cells.

Fig. S15 First five charge-discharge curves of the Li-S batteries with various separators at 0.2 C.

Fig. S16 Side-view SEM images of the Au-COF/rGO layer with different thickness, which was constructed by adjusting the total loading amount of the three components based on the mass ratio of Au: COF: rGO=1: 1: 1. The loading amount of Au: COF: rGO: (a) 1.0 mg: 1.0 mg: (b) 1.5 mg: 1.5 mg: 1.5 mg; (c) 2.0 mg: 2.0 mg: 2.0 mg; (d) 2.5 mg: 2.5 mg: 2.5 mg.

Fig. S17 Charge-discharge voltage profiles of Li-S cells with different interface after 1000 cycles.

Fig. S18 SEM images of Li metal anode after cycling in the Li-S cells with different interface: (a) PP; (b) Au-COF/rGO. The inset presents a corresponding digital photo of Li metal anode.

Fig. S19 SEM images of Au-COF/rGO a before and b after cycling.

Fig. S20 Charge-discharge voltage profiles at 0.1 C of Au-COF/rGO-based Li-S cell with a high sulfur loading of 3.7 mg cm^{-2} .

Separator	D _{Li+} at peak A [cm² s ⁻¹]	D _{Li+} at peak B [cm ² s ⁻¹]	D _{Li+} at peak C [cm² s ⁻¹]	
РР	6.3×10 ⁻⁸	1.9×10 ⁻⁸	9.5×10-9	
rGO/PP	1.0×10 ⁻⁷	4.7×10 ⁻⁸	2.4×10-9	
COF/rGO/PP	1.6×10-7	2.9×10 ⁻⁸	3.2×10 ⁻⁸	
Au-COF/rGO/PP	2.3×10-7	3.3×10 ⁻⁸	2.9×10 ⁻⁸	

Table S1 Li^+ diffusion coefficients of various separators.

 Table S2 Discharge specific capacity of the Li-S cells with different mass rations of

 Au decorated COF/rGO interface.

Separator	Original capacity (mA h g ⁻¹)	Capacity after 500 cycles (mA h g ⁻¹)	Capacity decay rate (%)	
0.5Au-COF/rGO	1204	458	0.124	
1.0Au-COF/rGO	1221	719	0.082	
1.5Au-COF/rGO	1265	515	0.119	
2.0Au-COF/rGO	1135	452	0.120	

Table S3 Discharge specific capacity of the Li-S cells with Au-COF/rGO interface in

different thicknesses based on the mass ratio of Au: COF: rGO=1: 1:	1.
---	----

Separator	Original capacity (mA h g ⁻¹)	Capacity after 500 cycles (mA h g ⁻¹)	Capacity decay rate(%)	
L-1.0	1094	458	0.162	
L-1.5	1221	719	0.082	
L-2.0	1137	536	0.163	
L-2.5	883	369	0.163	

Table S4 The comprehensive comparison of the electrochemical performance of Li-Scells with various interface/separators.

Separator	Max	Rate				
	Capacity (mA h g ⁻¹)	Capacity (mA h g ⁻¹) Rat	Rate	Cycle Number	Capacity Fading Rate/Cycle	Reference
SCOF-2	1219 (0.1 C)	470 (5 C)	1 C	800	0.047%	S1
S/D-[4+3]COFs2-3	1350 (0.1 C)	632 (2.5 C)	0.5 C	500	0.03%	S2
Li-CON@GN/Celgard	1622 (0.1 C)	782 (4 C)	1 C	600	0.057%	\$3
COF-1 NN	1120 (0.2 C)	580 (10 C)	2 C	300	0.053%	S 4
R-COF-BTD@S	1600 (0.1 C)	700 (2 C)	0.5 C	200	0.012%	85
TPB-DMTP-COF	880 (0.5 C)	480 (2.5 C)	1 C	800	0.05%	S6
TpPa-SO3Li/CNT/Celgard	1590 (0.1 C)	610 (4 C)	4 C	400	0.039%	S7
TpPa-SO ₃ H@PP	1290 (0.1 C)	490 (4 C)	1 C	500	0.05%	S8
CTP-1	1500 (0.05 C)	600 (5 C)	1 C	800	0.048%	S 9
Au-COF/rGO	1420 (0.2 C)	568 (4 C)	1 C	1000	0.047%	This work

	Cycling Performance						
Separator	Rate (C)	Max Capacity (mA h g ⁻¹)	Cycle Number	Sulfur loading (mg cm ⁻²)	Capacity Fading Rate/Cycle	Reference	
SCOF-2	0.2	855	100	3.2	82.5%	S1	
TpPa–SO ₃ H@PP	0.2	800	100	5.0	75.0%	S8	
COF-TPT(OH)@S	0.1	1080	10	5.0	90.1%	S10	
COF-MF@S	0.2	905	150	3.7	80.3%	S11	
COF-PDA/SWCNT	0.1	922	60	4.5	75.5%	S12	
4F-COF	0.05	844	200	9.0	74.0%	S13	
S/D- [4+3] COFs2-3	0.5	795	50	4.0	74.0%	S14	
COF66	0.2	1015	100	3.6	76.5%	S15	
Au-COF/rGO	0.1	1162	50	3.7	82.8%	This work	

Table S5 The comprehensive comparison of the electrochemical performance of Li-Scells with various functional interface/separators at high sulfur loading.

Supporting References

- S1. J. Xu, S. An, X. Song, Y. Cao, N. Wang, X. Qiu, Y. Zhang, J. Chen, X. Duan and J. Huang, Adv. Mater., 2021, 33, 2105178.
- S2. Q. Wang, K. Tang, Q. Liao, Y. Xu, H. Xu, Y. Wang, P. Wang, Z. Meng and K. Xi, Adv. Funct. Mater., 2023, 33, 2211356.
- S3. Y. Cao, C. Liu, M. Wang, H. Yang, S. Liu, H. Wang, Z. Yang, F. Pan, Z. Jiang and J. Sun, Energy Stor. Mater., 2020, 29, 207-215.
- S4. J. Yoo, S.-J. Cho, G. Y. Jung, S. H. Kim, K.-H. Choi, J.-H. Kim, C. K. Lee, S. K. Kwak and S.-Y. Lee, Nano Lett., 2016, 16, 3292-3300.
- S5. Y. Ge, Y. Meng, L. Liu, J. Li, X. Huang and D. Xiao, Green Energy Environ., 2023.
- S6. Y. Yang, X.-J. Hong, C.-L. Song, G.-H. Li, Y.-X. Zheng, D.-D. Zhou, M. Zhang, Y.-P. Cai and H. Wang, J. Mater. Chem. A, 2019, 7, 16323-16329.
- S7. Y. Cao, H. Wu, G. Li, C. Liu, L. Cao, Y. Zhang, W. Bao, H. Wang, Y. Yao and S. Liu, Nano Lett., 2021, 21, 2997-3006.
- S8. J. Zhao, G. Yan, X. Zhang, Y. Feng, N. Li, J. Shi and X. Qu, Chem. Eng. J., 2022, 442, 136352.
- S9. J. Xu, F. Yu, J. Hua, W. Tang, C. Yang, S. Hu, S. Zhao, X. Zhang, Z. Xin and D. Niu, Chem. Eng. J., 2020, **392**, 123694.
- S10. Y. Ge, J. Li, Y. Meng and D. Xiao, Nano Energy, 2023, 109, 108297.
- S11. X. Hu, J. Jian, Z. Fang, L. Zhong, Z. Yuan, M. Yang, S. Ren, Q. Zhang, X. Chen and D. Yu, Energy Stor. Mater., 2019, 22, 40-47.

- S12. L. Han, Y. Yang, S. Sun, J. Yue and J. Li, ACS Sustain. Chem. Eng., 2023.
- S13. K. Zhang, X. Li, L. Ma, F. Chen, Z. Chen, Y. Yuan, Y. Zhao, J. Yang, J. Liu and K. Xie, ACS Nano, 2023, 17, 2901-2911.
- S14. Q. Wang, K. Tang, Q. Liao, Y. Xu, H. Xu, Y. Wang, P. Wang, Z. Meng and K. Xi, Adv. Funct. Mater., 2023, 33, 2211356.
- S15. J. Xu, W. Tang, C. Yang, I. Manke, N. Chen, F. Lai, T. Xu, S. An, H. Liu and Z. Zhang, ACS Energy Lett., 2021, 6, 3053-3062.