Supporting Information

Establishing a multifunctional solid electrolyte interphase on a 3D host by ultra-fast double coating strategy for stable lithium metal batteries

Ji Young Maeng,^{a,†} Minjun Bae,^{a,†} Yonghwan Kim,^a Dohyeong Kim,^a Yujin Chang, ^a Seungman Park,^a Juhyung Choi,^b Eunji Lee,^a Jeongyeon Lee,^{d,*} Yuanzhe Piao^{a,b,c*}

- ^a Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
- ^b Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
- ^c Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si,
 Gyeonggi-do, 16229, Republic of Korea
- ^d School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong SAR, China

Corresponding author

- * Yuanzhe Piao: Tel.: +82 31 888 9141; Fax: +82 31 888 9148; E-mail: parkat9@snu.ac.kr
- * Jeongyeon Lee. E-mail: jaden-jy.lee@polyu.edu.hk

Author Contributions

† These	authors	equally	contributed	to	this	work
---------	---------	---------	-------------	----	------	------

Fig. S1 SEM images of (a) pristine CF and (b-d) Cu(OH)₂@CF.

Fig. S2 (a) SEM, (b) TEM and (c) STEM-HADDF and corresponding EDS images of In@Cu.

Fig. S3 HR-TEM images of In@Cu.

Fig. S4 SEM images of pristine CF after the flame treatment.

Fig. S5 TEM images of MSEI@Cu.

Fig. S6 The HADDF-STEM and corresponding EDS mapping images of MSEI@Cu.

Fig. S7 HR-TEM images of MSEI@Cu.

Fig. S8 XRD patterns of MSEI@Cu and In@Cu.

Fig. S9 (a) N_2 adsorption/desorption isotherms and (b) pore distributions of MSEI@Cu and In@Cu.

Fig. S10 The CV profiles of (a) MSEI@Cu, (b) In@Cu and (c) CF at a scanning rate of 0.1 mV s⁻¹ between 0 and 3 V, and (d) the areal capacitance of each electrode measured at different cycle.

Fig. S11 The high-resolution (a) C 1s, (b) F 1s, (c) S 2p and (d) In 3d XPS spectra of CF after electrochemical SEI formation.

Fig. S12 The high-resolution Cu 2p XPS spectra of (a) MSEI@Cu and (b) In@Cu after electrochemical SEI formation.

Fig. S13 The high-resolution Li 1s XPS spectra of (a) MSEI@Cu and (b) In@Cu after electrochemical SEI formation.

Fig. S14 EIS Equivalent circuit models.

Fig. S15 The top SEM image of Li–MSEI@Cu.

Fig. S16 SEM images (a–c) pristine CF, (d–f) In@Cu and (g–i) MSEI@Cu electrodes after Li electrodeposition at 0.1 mA cm⁻²: (a, d, g) 1 mAh cm⁻², (b, e, h) 2 mAh cm⁻², (c, f, i) 4 mAh cm⁻².

Fig. S17 The initial voltage profiles of MSEI@Cu, In@Cu and CF at 3 mA cm⁻² and 1 mAh cm⁻².

Fig. S18 Voltage profiles of CF at 10, 30 and 50th cycle at a current density of (a) 3 mA cm⁻² and (b) 5 mA cm⁻² with a fixed capacity of 1 mAh cm⁻².

Fig. S19 Voltage profiles of In@Cu at 10, 50, 100 and 150th cycle at a current density of (a) 3 mA cm^{-2} and (b) those at 10, 50 and 100th cycle at a current density of 5 mA cm^{-2} . Both profiles operated under a fixed capacity of 1 mAh cm^{-2} .

Fig. S20 Nyquist plots of (a) In@Cu (b) CF at fresh state, 30 and 50th cycle.

Fig. S21 The SEM images of In@Cu after 50 cycles at 3 mA cm⁻² and 1 mAh cm⁻².

Fig. S22 Nyquist plots of bulk Li symmetric cells after 30, 50, 150, 200th cycle at a current density of 1 mA cm⁻² and a capacity of 1 mAh cm⁻².

Fig. S23 Low-magnification SEM images of (a) Li–MSEI@Cu and (b) bulk Li electrodes after 200 cycles at 1 mA cm⁻² and 1 mAh cm⁻².

Fig. S24 Representative voltage profiles of the rate-performance of bulk Li|LFP full cell at various C-rates.

Name	MSEI@Cu	In@Cu	
	(Atomic %)	(Atomic %)	
S2p	6.43	0	
C1s	22.99	40.96	
In3d	6.12	15.53	
Ols	45.7	40.48	
Cu2p	18.76	3.03	

Table S1. XPS peak table of Cu@MSEI and In@Cu

	Li-MSEI@Cu	Li-In@Cu	Li-MSEI@Cu	Li-In@Cu
Name	Before Etching	Before Etching	After Etching	After Etching
	(Atomic %)	(Atomic %)	(Atomic %)	(Atomic %)
Lils	32.93	26.76	45.02	45.19
S2p	1.64	0	1.93	0
C1s	27.73	37.62	11.1	18.76
In3d	0	0	1.77	1.08
O1s	33.64	31.84	34.54	28.74
F1s	3.07	2.83	2.99	1.88
Cu2p	0	0	2.13	4.35

Table S2. XPS peak table of Li-Cu@MSEI and Li-In@Cu

	Electrode name	LiFePO ₄ loading mass (mg cm ⁻²)	Cycle number	Reference
1	CuFePBA-150/Cu	1.5	500	[S1]
	CuFePBA-150/Cu	12.4	120	[S1]
2	3D Li-Zn@Cu	2	250	[S2]
3	LVCF@Li anodes	12	200	[S3]
4	Li ₂ O@CuNA/CF	5	500	[S4]
5	Li@Cu _x O-7	8	500	[85]
	Li@Cu _x O-7	12	100	[S5]
6	$Ti_3C_2T_x@Cu$	2	225	[S6]
7	CuSnAl@Cu	3	300	[S7]
8	Cu–Ag alloy	2.8	500	[S8]
9	Cu ₃ Sn/CP	12	100	[S9]
10	3D porous ZnO-nVF@Cu	1	200	[S10]
11	Our work	6.5	500	
	Our work	13.5	200	

Table S3. Comparison of long-term cycling performance of LFP-based full cells between our workand other previously reported 3D Cu hosts.

References

- [S1] Y. Cai, B. Qin, J. Lin, C. Li, X. Si, J. Cao, J. Qi, ACS Appl. Mater. Interfaces, 2021, 13, 23803.
- [S2] Y. Ye, Y. Liu, J. Wu, Y. Yang, J. Power Sources, 2020, 472, 228520.
- [S3] T. Liu, S. Chen, W. Sun, L.P. Lv, F.H. Du, H. Liu, Y. Wang, *Adv. Funct. Mater.*, 2021, **31**, 2008514.
- [S4] L. Tan, X. Li, M. Cheng, T. Liu, Z. Wang, H. Guo, G. Yan, L. Li, Y. Liu, J. Wang, J. Power Sources, 2020, 463, 228178.
- [S5] Y. Nie, X. Dai, J. Wang, Z. Qian, Z. Wang, H. Guo, G. Yan, D. Jiang, R. Wang, J. Energy Chem., 2022, 75, 285.
- [S6] L. Zhang, Q. Jin, K. Zhao, X. Zhang, L. Wu, ACS Appl. Energy Mater., 2022, 5, 2514.
- [S7] Y. Lv, Q. Zhang, C. Li, C. Ma, W. Guan, X. Liu, Y. Ding, ACS Sustain-able Chem. Eng., 2022, 10, 7188.
- [S8] Y. Liu, S. Huang, Q. Meng, Y. Fan, B. Wang, Y. Yang, G. Cao, H. Zhang, *J Alloys Compd*, 2021, 885, 160882.
- [S9] J. Jiang, J. Lu, Y. Ou, G. Liu, S. Lu, Y. Jiang, B. Zhao, J. Zhang, ACS Appl. Mater. Interfaces, 2022, 14, 2930.
- [S10] G. Luo, X. Yin, D. Liu, A. Hussain, F. Liu, X. Cai, *ACS Appl. Mater. Interfaces*, 2022, 14, 33400.