Supplementary Information

Synthesis of nitrogen-doped carbon nanoboxes with pore structure derived from zeolite and their excellent performance in capacitive deionization

Keyang Li^a, Shaoqing Zhu^b, Shunan Zhao^b, Ming Gong^a, Xiaohuan Zhao ^{a, c, d}, Jie Liang ^{a,c}, Jianning Gan^a, Yilun Huang^{d, *}, Ming Zhao^a, Daming Zhuang^a, Qianming Gong^{a, *}

^a Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China

 ^b Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

 ^c School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China

^d SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, PR China

* Corresponding authors. e-mail address: gongqianming@mail.tsinghua.edu.cn (Q. Gong).

Figure S1: Programmed high-temperature treatment of the HCNBs-samples. Thenumerical postfix of the sample names was added according to the temperature of thefinalprocessinthetreatment.

Table S1 The conductivities of densely compacted HCNBs by Hall EffectMeasurement System .

Sample	HCNBs-	HCNBs-	HCNBs-
	800	1000	1200
Conductivity/(S·cm ⁻¹)	3.43±0.12	4.72±0.07	6.25±0.09

	Specific	Pore	Micropore	Atomic
Sample name	surface area	volume	volume	percentage
	(m^{2}/g)	(mL/g)	(mL/g)	of N (%)
HCNBs-1500	107.8	0.042	0.031	1.12
HCNBs-2000	98.2	0.019	0.014	0.76

Table S2 Porous structure and nitrogen atomic percentage of the HCNBssamples carbonized at relative high temperature (1500 °C and 2000 °C).

Fig S2 SEM image of the ZSM-5 particles.

Fig S3 SEM image of the ZSM-5 particles coated by the in-situ grown 3aminophenol-formaldehyde resin (ZSM-5@AFP precursor). Yellow arrows are added on the image to point out the obvious polymer layers.

Fig S4 TEM images of the ZSM-5 particle coated by APF derived carbon (ZSM-5@AFP carbon).

Fig S5. TGA analysis of ZSM@APF samples.

	HCNBs-800	HCNBs-1000	HCNBs-1200
Pyridinic N (%)	28.68	30.94	17.64
Pyrrolic N (%)	14.44	23.52	15.08
Graphitic N (%)	39.13	28.68	30.19
Oxidized N (%)	17.75	16.86	37.26
Atomic percentage of N (%)	7.11	6.29	4.92
C=O (%)	18.86	23.53	30.34
С-О-О/С-ОН (%)	45.80	43.10	39.32
СООН (%)	35.34	33.37	30.36
Atomic percentage of O (%)	7.43	6.39	5.61

Table S3 Existing forms of the doped nitrogen and oxygen atoms and their atomic percentage according to the XPS N_{1s} and O_{1s} spectrum.

Fig S6 (a) Contact angle comparation results of the HCNBs samples. (b) Dynamic contact angle measurements of HCNBs

Fig S7 Image of the three electrodes system applicated to investigate the electrochemical performance of the HCNBs-based electrodes.

Fig S8 CV profiles of HCNBs-800 (a) and HCNBs-1200 (b) electrodes under different scanning rate from 5 mV s-1 to 100 mV s-1 in a voltage window from -1.0 V to 0 V

Fig S9 GCD profiles of HCNBs-800 (a) and HCNBs-1200 (b) electrodes at different current density from 1 A \cdot g-1 to 20 A \cdot g-1

Fig S10 Ragone plot of the HCNBs-1000-based electrodes.

Figure S11: Linear correlation between NaCl concentration (mg L^{-1}) and solution conductivity (μ S cm⁻¹)

Materials	NaCl	Operation	Desalination	Ref.
	concentration	potential	capacity	
	$(mg \cdot L^{-1})$	(V)	$(mg \cdot g^{-1})$	
GO/CNF	450	1.2	13.2	1
webs				
mycelium	500	1.4	24.17	2
derived				
carbon				
PPCP800	1000	1.2	14.62	3
PCNSs	500	1.1	15.6	4
C-Zn	500	1.5	16.2	5
Mg-MOFs	500	1.2	16.82	6
derived				
carbon				
PDLCN	500	1.2	18.8	7
rGO/PC-	500	1.2	25.1	8
10				
foamy	500	1.2	30.2	9
carbon				
P-CNF	500	1.2	30.4	10
NP-EHPC	500	1.2	24.14	11
PPD-	600	1.2	17.5	12
CNTs@M				
С				
HCNBs	500	1.4	32.3	This work

Table S4: Desalination capacities of different carbon and carbon-based materialsfrom the previously reported works under different voltage and NaCl concentration.

Fig S12 Comparation of the SAC capacity of this work and previously reported carbon-based materials.

Fig S13. Mearsurement of pH during the desalination process under different voltage (1 V, 1.2 V and 1.4 V, HCNBs-1000-based electrodes, 500 mg \cdot L⁻¹NaCl solution)

$$\begin{split} \mathcal{O}_{2} + 2H_{2}O + 4e^{-} \rightarrow 4OH^{-}, \varphi^{\theta} &= 0.4009 \, V\#SR(1) \\ \begin{cases} \mathcal{O}_{2} + H_{2}O + 2e^{-} \rightarrow HO^{-}_{2} + OH^{-}, \varphi^{\theta} &= -0.065 \, V \\ HO^{-}_{2} + H_{2}O + 2e^{-} \rightarrow 3OH^{-}, \varphi^{\theta} &= 0.867 \, V \\ \end{cases} \\ 2Cl^{-} \rightarrow Cl_{2} + 2e^{-}, \varphi^{\theta} &= 1.360 \, V\#SR(3) \\ Cl_{2} + H_{2}O \rightarrow HCl + HOCl\#SR(4) \end{split}$$

Fig S14. The conductivity fluctuation of NaCl solution during 50 cycles of charging/discharging for HCNBs-1000 electrodes (500 mg \cdot L⁻¹, 1.4 V).

Table S5. Charge efficiencies of HCNBs-1000 electrode at different charging voltageswith an initial NaCl concentration of 500 mg L^{-1} .

Charging voltage /V	1	1.2	1.4
Charge efficiency	0.703	0.755	0.812

Table S6. Charge efficiencies of HCNBs-1000 electrode at different initial NaClconcentrations at charging voltage of 1.4 V.

Initial concentration /mg L ⁻¹	125	250	500
Charge efficiency	0.847	0.826	0.812

Reference:

- 1. Y. Bai, Z. H. Huang, X. L. Yu and F. Y. Kang, *Colloids and Surfaces a-Physicochemical and Engineering Aspects*, 2014, 444, 153-158.
- C. Zhao, Q. Wang, S. Z. Chang, S. Zhang, Z. H. Li, Z. H. Shen, X. Jin, H. Xiao and H. G. Zhang, *Carbon*, 2022, **196**, 699-707.
- 3. W. L. Xing, M. Zhang, J. Liang, W. W. Tang, P. C. Li, Y. Luo, N. Tang and J. Y. Guo, *Separation and Purification Technology*, 2020, **251**.
- 4. T. T. Wu, G. Wang, Q. Dong, F. Zhan, X. Zhang, S. F. Li, H. Y. Qiao and J. S. Qiu, *Environmental Science & Technology*, 2017, **51**, 9244-9251.
- 5. Z. Z. Xie, X. H. Shang, J. B. Yan, T. Hussain, P. F. Nie and J. Y. Liu, *Electrochimica Acta*, 2018, **290**, 666-675.
- 6. C. P. Li, Y. Q. Wu, F. Y. Zhang, L. X. Gao, D. Q. Zhang and Z. X. An, *Separation and Purification Technology*, 2021, **277**.
- 7. C. P. Li, Y. Q. Wu, L. X. Gao, D. Q. Zhang and Z. X. An, *Journal of Environmental Chemical Engineering*, 2022, **10**.
- 8. B. F. Li, Z. H. Xiao, Y. T. Cao, Z. Q. Yu, Y. K. Sun, Z. C. Li, Y. X. Wang, Z. F. Gao and C. M. Xu, *Fuel*, 2023, **352**.
- 9. C. P. Li, Y. Q. Wu, J. J. An, L. X. Gao, D. Q. Zhang, J. Li and Z. X. An, *Desalination*, 2023, **559**.
- 10. P. F. Nie, S. P. Wang, X. H. Shang, B. Hu, M. H. Huang, J. M. Yang and J. Y. Liu, *Desalination*, 2021, **520**.
- H. Zhang, C. H. Wang, W. X. Zhang, M. Zhang, J. W. Qi, J. S. Qian, X. Y. Sun, B. Yuliarto, J. Na, T. Park, H. G. A. Gomaa, Y. V. Kaneti, J. W. Yi, Y. Yamauchi and J. S. Li, *Journal of Materials Chemistry A*, 2021, 9, 12807-12817.
- 12. Y. Lian, D. W. Wang, H. X. Guo, Z. L. Cao, J. Zhao and H. H. Zhang, *Carbon*, 2023, **204**, 50-56.