1	Supporting Information
2	An <i>in situ</i> growth route towards anti-perovskite Ni ₃ InN nanoparticles embedded within
3	amorphous silicon nitride
4	
5	Shotaro Tada, ^{a, d} Sakurako Takazawa, ^a Norifumi Asakuma, ^a Maxime Cheype, ^b Sawao Honda, ^a
6	Ravi Kumar ^c , Samuel Bernard, ^b and Yuji Iwamoto ^{*a}
7	
8	a. Department of Life Science and Applied Chemistry, Graduate School of Engineering,
9	Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
10	b. University of Limoges, CNRS, IRCER, UMR 7315, F-87000, Limoges, France
11	c. Laboratory for High Performance Ceramics, Department of Metallurgical and Materials
12	Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, India
13	d. Department of Metallurgical and Materials Engineering, Indian Institute of Technology
14	Madras (IIT Madras), Chennai 600036, India
15	
16	* Corresponding author: Yuji Iwamoto
17	E-mail: iwamoto.yuji@nitech.ac.jp
18	Tel/Fax: +81-52-735-5276
19	
20	Keywords
21	Anti-perovskite, Ni ₃ InN, amorphous silicon nitride, polymer-derived ceramics (PDCs)
22	
23	
24	
25	
26	

27 1. Synthesis of Ni_{0.1}In_{0.1}-PH sample

The handling of the chemicals and reagents was performed under an inert atmosphere of pure argon (Ar) using standard Schlenk techniques and vacuum/Ar lines. Commercially available perhydropolysilazane (PHPS, NN120-20, 20 wt% in dibutyl ether solution) was provided by Sanwa Kagaku, Corp., Shizuoka, Japan. The dibutyl ether was substituted by super-anhydrous toluene (99.5 % purity, Wako Pure Chemical Industries, Ltd., Osaka, Japan) to be 20 wt% for the PHPS contents.

34 In a typical experiment for Ni_{0.1}In_{0.1}-PH sample, a 100 mL two-neck round-bottom flask equipped with a magnetic stirrer was charged with the solvent-substituted PHPS (10 mL, 44 35 mmol, 20 wt% in toluene) and toluene (30 mL), then NiCl₂ (0.59 g, 4.4 mmol, Ni/Si = 0.1) and 36 37 $InCl_3$ (0.98 g, 4.4 mmol, In/Si = 0.1) were added to the solution at room temperature. The 38 reaction mixture was vigorously stirred at R.T. for 30 min and subsequently refluxed at 110 °C 39 for 15 h under flowing Ar with maintaining vigorous stirring. After the reaction mixture was 40 cooled to room temperature, the toluene solvent was removed under vacuum at 60 °C to give 41 a Ni_{0.1}In_{0.1}-PH sample.

42

43 2. Supporting data

44

45 Scheme S1 Dehydrogenation reaction of Si-H/N-H in PSZ catalyzed by NiCl₂ and possible
46 Ni(II) coordination structures such as 4-coordinate Ni(II) complex.
47

48

49

50 51

52

53

54

55

56

57

59	Table S1 The selected	absorption band	s position, l	band shift and	relative intensity	to vSi–N–Si

Band	Sample	Wavenumber Band shift		Relative intensity
-	-	/cm ^{−1}	/cm ^{−1}	(I _{band} / I _{Si-N-Si})
v(Si-N-Si)	Durazane®1800	881.3	-	1
	In _{0.1} -DRZ	876.5	-4.82	1
	N _{i0.05} In _{0.1} -DRZ	880.4	-0.96	1
	Ni _{0.1} In _{0.1} -DRZ	881.3	0	1
v(N-H)	Durazane®1800	3378.7	-	0.237
	In _{0.1} -DRZ	3400.9	22.2	0.157
	$N_{i0.05} In_{0.1}\text{-}DRZ$	3398.0	19.3	0.092
	Ni _{0.1} In _{0.1} -DRZ	3398.9	20.2	0.091
ρ(Si ₂ N-H)	Durazane®1800	1160.9	-	0.508
	In _{0.1} -DRZ	1133.0	-27.9	0.244
	$N_{i0.05}In_{0.1}$ -DRZ	1140.7	-20.2	0.158
	Ni _{0.1} In _{0.1} -DRZ	1133.0	-27.9	0.133
v(Si-H)	Durazane®1800	2121.3	-	0.241
	In _{0.1} -DRZ	2123.2	1.9	0.163
	$N_{i0.05}In_{0.1}$ -DRZ	2128.1	6.8	0.102
	Ni _{0.1} In _{0.1} -DRZ	2130.0	8.7	0.068
δ(Si-CH ₃)	Durazane®1800	1253.5	-	0.278
	In _{0.1} -DRZ	1254.5	1	0.329
	$N_{i0.05}In_{0.1}\text{-}DRZ$	1256.4	2.9	0.321
	Ni _{0.1} In _{0.1} -DRZ	1259.3	5.8	0.354
δ(C–H, Vinyl)	Durazane®1800	1403.9	-	0.058
	In _{0.1} -DRZ	1403.0	-0.9	0.109
	$N_{i0.05} In_{0.1}\text{-}DRZ$	1403.0	-0.9	0.087
	Ni _{0.1} In _{0.1} -DRZ	1403.0	-0.9	0.120

 $(I_{\text{band}}/I_{\text{Si-N-Si}})$ in the ATR-FTIR spectra for Ni_xIn_{0.1}-DRZ samples.

- 76
- 77

Fig. S1 ATR-FTIR spectra of as-synthesized $Ni_x In_y$ -PH samples in the range of (a) 3500–2500 cm⁻¹ and (b) 2300–600 cm⁻¹.

81 [FTIR analysis]

As reference spectra, as-received PHPS was recorded. FTIR (ATR /cm⁻¹): 3373 (vN–H), 82 83 2143 (vSi-H), 1172 (pSi₂N-H) and 822 (vSi-N-Si) [1-5]. The vSi-N-Si stretching bands for 84 NiCl₂ and InCl₃-co-modified PHPS samples indicated all lower wavenumber (WN) values than 85 those for as-received PHPS sample. The absorption band shift of the vSi-N-Si on Ni_{0.1}-PH, In_{0.1}-PH, and Ni_{0.1}In_{0.1}-PH samples were measured to be -7.7, -22.2, and -20.3 cm⁻¹, 86 87 respectively. It was found that the extent of band shift is greater in In_{0.1}-PH and Ni_{0.1}In_{0.1}-PH 88 samples compared to the Ni_{0.1}-PH sample. In addition, the chemical modification of PHPS 89 with NiCl₂ and InCl₃ resulted in a reduction of the relative intensity on both pSi₂N-H and vSi-90 H bands. The extent of decreased intensities of both pSi₂N-H and vSi-H was greater for In_{0.1}-PH and Ni_{0.1}In_{0.1}-PH samples compared to Ni_{0.1}-PH sample. The vSi–H stretching band varies 91 toward higher WN values in the range 2142–2152 cm⁻¹. The vibrational frequency of the vSi– 92 93 H increases either through the electronegativity (X) of the substituting group increases [6] or 94 through the increase of nitrogen concentration within the precursors [7], *i.e.*, the substitution 95 of H atoms (X = 2.2 by Pauling scale) with N atoms (X = 3.0 by Pauling scale) on Si atoms 96 back bonded to Si-H bonds. The substitution leads to the vSi-H stretching mode toward higher

- 97 frequency due to the induction effect. This result is consistent with the formation of the ternary
- 98 silylamino group during reflux at 110 °C. Additionally, new absorption bands appeared on
- 99 In_{0.1}-PH and Ni_{0.1}In_{0.1}-PH samples (Fig. S1a) at 3240, 3150, and 1404 cm⁻¹, which are
- assigned to ammonium salt, most probably ammonium chloride (NH₄Cl) [8].
- 101
- 102 Reference:
- O. Funayama, T. Kato, Y. Tashiro and T. Isoda, Synthesis of a Polyborosilazane and Its
 Conversion into Inorganic Compounds, *J. Am. Ceram. Soc.*, 1993, **76**, 717–723.
- 105 2. O. Funayama, Y. Tashiro, T. Aoki and T. Isoda, Synthesis and pyrolysis of
 106 polyaluminosilazane, *Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal Ceram.*107 Soc. Japan, 1994, **102**, 908–912.
- Y. Iwamoto, K. Kikuta and S. Hirano, Microstructural development of Si₃N₄ –SiC–Y₂O₃
 ceramics derived from polymeric precursors, *J. Mater. Res.*, 1998, **13**, 353–361.
- Y. Iwamoto, K. Kikuta and S. Hirano, Si₃N₄ –SiC–Y₂O₃ ceramics derived from yttrium modified block copolymer of perhydropolysilazane and hydroxy-polycarbosilane, *J. Mater. Res.*, 1999, 14, 1886–1895.
- 113 5. Y. Iwamoto, K. Kikuta and S. Hirano, Si₃N₄-TiN-Y₂O₃ ceramics derived from chemically
 114 modified perhydropolysilazane, *J. Mater. Res.*, 1999, 14, 4294–4301.
- 6. G. Lucovsky, R. J. Nemanich and J. C. Knights, Structural interpretation of the vibrational
 spectra of a-Si: H alloys, *Phys. Rev. B*, 1979, **19**, 2064–2073.
- 117 7. I. V. Afanasyev-Charkin, L. G. Jacobsohn, R. D. Averitt and M. Nastasi, Amorphous silicon
 118 nitride films of different composition deposited at room temperature by pulsed glow
 119 discharge plasma immersion ion implantation and deposition, *J. Vac. Sci. Technol. A*120 *Vacuum, Surfaces, Film.*, 2004, 22, 2342–2346.
- 8. Q. Qu, L. Li, W. Bai, C. Yan and C. N. Cao, Effects of NaCl and NH₄Cl on the initial
 atmospheric corrosion of zinc, *Corros. Sci.*, 2005, 47, 2832–2840.
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130

Fig. S2 TG-MS analysis of PHPS: (a) The total ion current (TIC) chromatogram and (b) mass
fragments at selected temperatures.

135

136 137

Fig. S3 (a) TG-curves of starting PHPS and as-synthesized $M_x In_{0.1}$ -PH samples (M = Ni and Co, x = 0 or 0.1) to 1000 °C under He and (b) the total ion current (TIC) chromatogram and selected mass fragments measured for Ni_{0.1}In_{0.1}-PH sample during TG-MS analysis.

143 Fig. S4 XRD patterns of (a) In_{0.1}-PH600 and (b) In_{0.1}-DRZ600 samples

- 144
- 145

146 [TG-MS analysis]

The TG-curve of as-received PHPS (**Fig. S3a**) displays a weight loss at 50–550 °C, resulting in a final ceramic yield of 60.9 %. According to the MS analyses of as-received PHPS (**Fig. S3b**), these weight losses are due to the volatilization of residual solvents such as dibutyl ether (mass spectra measured at 110 °C, m/z = 57, 41, 29), low molecular weight organosilicon compounds such as \equiv Si–NH– (mass spectra measured at 200 °C, m/z = 43) and NH₃ (m/z = 17), which are associated with cross-linking reactions of the precursor through trans-amination, and bond redistribution reactions.

154 The Ni_{0.1}In_{0.1}-PH and Co_{0.1}In_{0.1}-PH samples showed similar behavior of weight loss (Fig. S3a). The weight loss at 50-300 °C was significantly suppressed compared to the as-received 155 PHPS. As discussed in the FTIR results (Fig. S1), the catalytic cross-linking reaction of the 156 157 PSZ network during polymer synthesis through the dehydrocoupling reaction of Si-H/N-H catalyzed by MCl₂ helps to suppress the weight loss in this temperature range. In contrast to 158 159 M_{0.1}In_{0.1}-PH samples, the In_{0.1}-PH sample showed less pronounced weight loss suppression 160 in this temperature range, possibly due to either the quantitative dependence or the participation 161 of a different reaction—*i.e.*, acid-base reaction—for In_{0.1}-PH sample.

162 The weight loss from 330 °C to 500 °C is greater in $Ni_{0.1}In_{0.1}$ -PH and $Co_{0.1}In_{0.1}$ -PH 163 samples, indicating the volatilization of $InCl_3$ which usually starts at 330 °C under an inert 164 atmosphere [1]. There was no significant difference in the weight loss of $Ni_{0.1}In_{0.1}$ -PH and 165 $Co_{0.1}In_{0.1}$ -PH samples, with the difference being within about 5% at 550 °C; however, the Co

- 166 species showed a smaller weight loss. In contrast, the $In_{0.1}$ -PH sample showed a featureless
- 167 slope in this temperature range, suggesting that the in situ formation of In–N bond via acid-
- 168 base reaction during synthesis reduced the amount of unreacted InCl₃ which evaporated at
- around 330 °C. Weight loss from 550 °C is not observed in as-received PHPS but is observed
- 170 in In_{0.1}-PH, Ni_{0.1}In_{0.1}-PH and Co_{0.1}In_{0.1}-PH samples suggesting that the decomposition of the
- 171 in situ formed In-N bonds occurred over 550 °C under an inert atmosphere [2].
- 172
- 173
- 174 Reference:
- C. Karakaya, S. Ricote, D. Albin, E. Sánchez-Cortezón, B. Linares-Zea and R. J. Kee,
 Thermogravimetric analysis of InCl₃ sublimation at atmospheric pressure, *Thermochim. Acta*, 2015, **622**, 55–63.
- 178 2. Q. Guo, O. Kato and A. Yoshida, Thermal stability of indium nitride single crystal films, J.
- 179 *Appl. Phys.*, 1993, **73**, 7969–7971.
- 180

- 184
- 185
- 186
- 187
- 188

Table S2 Chemical composition of as-pyrolyzed Ni_{0.1}In_{0.1}-PHT samples (T = 300, 400, and191600)

	Composition (wt%)								
Name	Si	С	N	0	Ni	In	CI	Atomic ratio normalized on Si	
Ni _{0.1} In _{0.1} -PH300	44.26	0.51	25.52	3.03	11.23	9.20	6.26	$Si_1N_{1.16}O_{0.12}Ni_{0.12}In_{0.05}CI_{0.11}$	
Ni _{0.1} In _{0.1} -PH400	45.44	0.43	27.96	2.76	10.79	7.26	5.36	$Si_1N_{1.23}O_{0.11}Ni_{0.11}In_{0.04}CI_{0.09}$	
Ni _{0.1} In _{0.1} -PH600	40.55	0.38	31.80	4.21	12.41	6.98	3.67	$Si_1N_{1.57}O_{0.18}Ni_{0.15}In_{0.04}CI_{0.07}$	

Table S3 Chemical composition of as-pyrolyzed $Co_{0.1}In_{0.1}$ -DRZT samples (T = 300, 400, and

195 600)

		Composition (wt%)				-				
			Composition (wt%)						_	
	Name	Si	С	Ν	0	Co	In	CI	Atomic ratio normalized on Si	
-	Co _{0.1} In _{0.1} -DRZ300	37.65	4.94	21.88	3.35	9.43	13.72	9.04	$Si_1C_{0.31}N_{1.17}O_{0.16}Co_{0.12}In_{0.09}CI_{0.19}$	
	Co _{0.1} In _{0.1} -DRZ400	33.43	0.68	29.25	7.88	9.44	10.29	9.03	$Si_1C_{0.05}N_{1.75}O_{0.41}Co_{0.13}In_{0.08}CI_{0.21}$	
196	Co _{0.1} In _{0.1} -DRZ600	43.76	0.39	31.79	4.25	16.78	0.13	2.89	$Si_1C_{0.02}N_{1.46}O_{0.17}Co_{0.18}In_{0.00}CI_{0.05}$	

200 Fig. S6 (a) BF-TEM image and (b) HAADF-STEM image of the Ni_{0.05}In_{0.1}-DRZ600 sample.

- $201 \qquad (c) \ the \ Ni_3 In N \ crystallite \ size \ distribution, \ and \ the \ result \ of \ STEM-EDS \ mapping \ of \ (d) \ Ni, \ (e)$
- In and (f) Si.

Fig. S7 SEM-EDS and SEM-CL image analysis for the Ni_{0.1}In_{0.1}-PH600 sample: (a) SEM image, and the results of EDS mapping of (b) Si, (c) N, (d) Ni, (e) In, and (f) Cl. (g) the SEM-CL image of the selected area around the nanoparticles. The white dashed line represents the monolithic region of a-SiN matrix.

- 210
- 211

212

Fig. S8 XPS survey scan spectra for (a) bulk Ni₃InN and (b) Ni₃InN/SiN nanocomposite
(Ni_{0.1}In_{0.1}-PH600 sample)

Fig. S9 (a) N₂ adsorption and desorption isotherms at -196 °C for Ni_{0.05}In_{0.1}-DRZ600 sample, and the resulting pore size distribution curve characterized by the (b) MP plot and (c) BJH plot.

Fig. S10 (a) N₂ adsorption and desorption isotherms at -196 °C for Ni_{0.1}In_{0.1}-PH600 sample, and the resulting pore size distribution curve characterized by the (b) MP plot and (c) BJH plot.

Fig. S11 (a) N₂ adsorption and desorption isotherms at -196 °C for Ni_{0.1}In_{0.1}-DRZ600 sample, and the resulting pore size distribution curve characterized by the (b) MP and (c) BJH plot.

Fig. S12 (a) N_2 adsorption and desorption isotherms at -196 °C for In_{0.1}-DRZ600, and the resulting pore size distribution curve characterized by the (b) MP and (c) BJH plot.

Table S4 The Brunauer–Emmett–Teller (BET) surface areas and pore volumes of pyrolyzed

233 samples.

	Samples	Ѕ _{ВЕТ} /m² g ^{−1}	V _{BET, total} /cm ³ g ^{−1}	V _{micro} /cm³ g ^{−1}	V _{meso} ∕cm³ g⁻¹
-	Ni _{0.1} In _{0.1} -PH600	32	0.18	n.d.	0.17
	Ni _{0.05} In _{0.1} -DRZ600	460	0.39	0.19	0.18
	Ni _{0.1} In _{0.1} -DRZ600	315	0.19	0.13	0.08
	In _{0.1} -DRZ600	441	0.29	0.24	n.d.