Supporting Information

Highly Selective Photothermal Conversion of CO₂ to Ethylene Using Hierarchical Boxwood Ball-like Weyl Semimetal WTe₂ Catalysts

Xiaoyue Zhang,^a Chaoran Dong,^a Yong Yang, ^{b,*} Yingjie Hu,^c Lizhi Wu,^b Yu Gu,^d Kan Zhang,^d Jinyou Shen ^{a,*}

 ^a Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
^b School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

^c Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing 210094, China.

^d MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China.

*Corresponding authors. E-mail addresses: <u>yychem@njust.edu.cn (Y</u>. Yang), shenjinyou@mail.njust.edu.cn (J. Shen).

Fig. S1 (a) Illustration of the synthesis of the 3D WTe $_2$ HNSs; FE-SEM images of (b) WTe $_2$ HNSs;

(c) WTe₂ NRs, d. WTe₂ NPs.

Fig. S2 XPS survey spectra of WTe₂ HNSs, WTe₂ NRs, WTe₂ NPs; (a) W 4*f* and (b)Te 3*d*, respectively.

Fig. S3 XRD patterns of WO₃, WTe₂ HNSs, WTe₂ NRs and WTe₂ NPs.

Fig. S4 (a) The TEM image and (b) HRTEM image of WTe_2 NRs.

Fig. S5 FE-SEM images and the whole TEM image of WO_3 .

Fig. S6 (a) HAADF STEM image of WTe₂ HNSs; (b) SAED patterns showing polycrystalline nanomaterials.

Fig. S7 (a-c) Real and imaginary images of refractive index of WTe₂ HNSs, NRs and NPs samples.

Complex refractive index

See also: Mathematical descriptions of opacity.

When light passes through a medium, some part of it will always be absorbed. This can be conveniently taken into account by defining a complex refractive index, $\underline{n}=n+ik$.

Here, the real part n is the refractive index and indicates the phase velocity, while the imaginary part k is called the optical extinction coefficient or absorption coefficient.

Fig. S8 Simulated electric field distribution of WTe_2 HNSs, NRs and NPs under 450 nm light of WTe_2 HNSs, NRs and NPs samples.

Fig. S9 The temperature curves of different samples under Xe lamp light.

Fig. S10 Pore size distribution curves of different samples.

Fig. S11 The isotope analysis of $^{13}\mathrm{C}_{2}\mathrm{H}_{4}$ using $^{13}\mathrm{CO}_{2}$ as carbon source by GC-MS.

Fig. S12 Photocurrent density measured in 0.5 M KPi buffer solution (pH=7) at open-circuit voltage under AM 1.5 G illumination.

Reaction Coordinates

Fig. S13 Speed steps of two kinds of possible *COOH-*CHO pathways over WTe₂ HNSs.

Fig. S14 The structures of the initial states, transition states and final states for CO_2 photothermal catalytic reduction to C_2H_4 on a WTe₂ HNSs surface (blue spheres = W, orange spheres = Te, red spheres = O, gray spheres = C and white spheres = H).

Fig. S15 FE-SEM image of (a) $PtTe_2$ and (c) NiTe; the whole TEM image of (b) $PtTe_2$ and (d) NiTe.

Fig. S16 XRD patterns of $PtTe_2$ and NiTe.

Catalyst	Feeds (CO ₂ + H ₂ O/H ₂)	light source	C ₂₊ (µmol/g)	C ₂₊ sel.%
Ni, Co-doped	CO ₂ +H ₂ O	300W	C ₂ H ₆ = 8.64 μmol/g	C ₂ H ₆ =17%
BZCY532 ¹		Xe lamp	C ₃ H ₈ =3.22 µmol/g	C ₃ H ₈ =7%
$C_{0}M_{P}/(M_{P}O_{1})^{2}$	CO/H ₂ /Ar	300W	СО	32.4%
Colvill _x /(lvinO ₂) _{2-X} ²	=20/20/60	Xe lamp	conversion:13.9%	
WO _{3-X} ³	CO ₂ +H ₂ O	300W	$C_2H_4=5.3 \ \mu mol/g$	>34%
		Xe lamp	C ₂ H ₆ =0.93 µmol/g	
CoAl-LDH(700) ⁴	CO/H ₂ /Ar	300W	CO conversion:	36.3%
	=20/60/20	Xe lamp	35.4%	
CoFe-650 ⁵	CO ₂ /H ₂ /Ar	300W	CO ₂ conversion:	36.42%
	=15/60/25	Xe lamp	82.2%	
Co/Co ₃ O ₄ ⁶	CO/H ₂ /Ar	300W	CO conversion:	41.9%
	=20/60/20	Xe lamp	15.4%	
NiO _X /Nb ₂ O ₅ ⁷	CO ₂ +H ₂	UV	C ₂ H ₆ =194.18	C ₂ H ₆ =57.5%
		irradiation	µmol/g	
Ni-500 ⁸	CO/H ₂ /Ar	300W	CO conversion: 15	65.1%
	=20/60/20	Xe lamp	%	
WTe ₂ NPs		300W		С Ц _929/
This work		Xe lamp	C ₂ H ₄ =41.0 μmol/g	€ ₂ π ₄ =82%

Table S1. Performance comparison of WTe_2 and recently reported photothermal catalysts for C_{2+} production.

WTe ₂ NRs		300W	С Ц —97 7 umol/a	С Ц -979/
This work	CO ₂ +H ₂ O	Xe lamp	С ₂ п ₄ -87.7 µшолу	C2H4-0770
WTe ₂ HNSs	CO ₂ +H ₂ O	300W	C ₂ H ₄ =115.5	C H 000/
This work		Xe lamp	μmol/g	C ₂ H ₄ =88%

Supporting Reference

- J. Tian, Y. Ren, L. Liu, Q. Guo, N. Sha, Z. Zhao, *Mater. Res. Express*, 2020, 7, 085504.
- R. Li, Y. Li, Z. Li, W. Wei, S. Ouyang, H. Yuan, T. Zhang, Sol. RRL, 2020, 11, 2000488.
- Y. Deng, J. Li, R. Zhang, C. Han, Y. Chen, Y. Zhou, W. Liu, P. K. Wong, L. Ye, Chinese J. Catal., 2022, 43, 1230-1237.
- Z. Li, J. Liu, Y. Zhao, R. Shi, G. I. N. Waterhouse, Y. Wang, L. Wu, C. H. Tung, T, Zhang, *Nano Energy*, 2019, **60**, 467-475.
- G. Chen, R. Gao, Y. Zhao, Z. Li, G. I. N. Waterhouse, R. Shi, J. Zhao, M. Zhang, L. Shang, G. Sheng, X. Zhang, X. Wen, L. Wu, C. H. Tung, T. Zhang, *Adv. Mater.*, 2018, **30**, 1704663.
- Z. Li, J. Liu, Y. Zhao, G. I. N. Waterhouse, G. Chen, R. Shi, X. Zhang, X. Liu, Y. Wei, X. Wen, L. Wu, C. H. Tung, T. Zhang, *Adv. Mater.*, 2018, **30**, 1800527.
- Z. Wang, M. Xiao, X. Wang, H. Wang, X. Chen, W. Dai, Y. Yu, X. Fu, *Appl. Surf. Sci.*, 2022, **592**, 153246.
- Y. Wang, Y. Zhao, J. Liu, Z. Li, G. I. N. Waterhouse, R. Shi, X. Wen, T. Zhang, Adv. Energy Mater., 2020, 10, 1902860.