Electronic Supplementary Information (ESI)

Adjusting perfluorinated side chain length in dual-grafted anion exchange membranes for high performance fuel cells

Shoutao Gong^{a,b}, Long Han^{a,b}, Xinli Zhang^{a,b}, Quan Jin^{a,b}, Gaohong He^{a,b} and Fengxiang Zhang^{a,b*}

^a State key laboratory of fine chemicals, Dalian University of Technology, Dalian 116024, China

^b School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China.

*Correspondence: <u>zhangfx@dlut.edu.cn</u>

Content

- 1 Syntheses of I-2O-Pip and poly (biphenyl piperidinium) or PBP.
- 2 Chemical structure.
- 3 Thermal stability and mechanical properties.
- 4 Performance of PBP.
- 5 Performance comparison.

Scheme S1 Preparation of I-2O-Pip.

For the synthesis of PBP, biphenyl (1.902 g, 10 mmol) and N-methyl-4-piperidone (1.37 mL, 12 mmol) were dissolved in 4 mL dichloromethane; then TFA (1 mL, 13.5 mmol) and TFSA (7.2 mL, 90 mmol) were added dropwise under an ice bath and reacted for 3 h. The viscous polymer solution was precipitated in deionized water, washed to neutral and vacuum dried at 60 °C to get white solid. Above solid (1 g) was dissolved in 20 mL DMSO, 0.8 mL iodomethane and 0.8 g K_2CO_3 were added, and the mixture was stirred at 40 °C for 24 h. The solution was then precipitated in ethyl acetate and washed repeatedly with deionized water. The product was vacuum dried at 60 °C to obtain PBP. The synthetic route is illustrated in **Scheme S2**. A 5 wt.% DMSO solution of PBP was used as fuel cell binder.

Scheme S2 Synthesis of PBP.

2 Chemical structure

Fig. S1 ¹H NMR spectra of (a) I-2O and (b) I-2O-Pip.

Fig. S2 ¹⁹F NMR spectra of PAP-ON-pFx.

3 Thermal stability and mechanical properties

Fig. S3 TGA curve of PAP-ON-pF6 under $N_{\rm 2}$ atmosphere.

Fig. S4 Stress-strain curves of PAP-ON and PAP-ON-pFx AEMs.

4 Performance of PBP

Fig. S5 The conductivity, water uptake (WU) and ion exchange capacity (IEC) of PBP.

5 Performance comparison

AEMs	Temperature (°C)	NaOH or KOH concentration (M)	Test time (h)	Conductivity retention (%)	Ref.	
PAP-ON-pF6	80	1	1000	95.0		
		2	1000	87.0		
		1	1.600	90.1	This work	
		2	1600	80.8		
BD ₃ /50EVOH	70	1	310	>96.0	1	
QAPCE-16C	80	1	960	95.8	2	
PBPA-6-QA	80	1	1000	97.0	3	
s-PDTP-54	80	1	1000	89.2	4	
QABP-2	80	1	1000	88.0	5	
qPBN-CA ₄₀	80	1	1008	90.0	6	
x-PFTP-DP-C5-10	80	1	1200	90.0	7	
C-IL-100	50	1	1200	97.8	8	
PITP-C10Q85	80	1	1200	80.0	9	
QPIT-CE _{0.5}	80	1	1200	85.0	10	
PQP-100	80	1	1334	75.0	11	
PDTP-10	80	1	1500	81.0	12	

QPEPTpi-35	80	1	2000	85.0	13
P(VCP ₁₀ -TP ₉₀)	80	1	5000	93.8	14
PHPFP-QA	80	2	720	83.0	15
Tec-PBI-50	60	2	672	78.0	16
BOC-DMI	80	2	1080	82.3	17
QABNP	80	2	1080	90.0	18

 Table S2 Comparison between PAP-ON-pF6 and recently reported AEMs in terms of IEC,

AEMs (Conductivity (σ) at 80 °C (mS cm ⁻¹)		רותם	Fuel cell durability			
	IEC (mmol g ⁻¹)		σ/IEC	(mW cm ⁻²)	Current density (mA cm ⁻²)	Tempe rature (°C)	Time (h)	Ref.
PAP-ON- pF6	2.17	134.2	61.8	1066	200	60	140	<mark>This</mark> work
QPEPTpi-35	2.91	140	48.1	1200	200	60	20	13
TPTP-Pip- OH-20%	2.71	143.2	52.8	405	200	60	32	19
PBP-6-Pip	3.78	117.1	31.0	307	200	60	40	20
PQP-100	2.3	118.7	51.6	496	200	60	85	11
PB2Pip- 5C8F	2.42	168.5	69.6	718	100	80	70	21
O-PDQA-3	1.97	106	53.8	1180	400	70	16	22
PDTP-10	2.57	110	42.8	621	300	60	18	12
PPTDF-QA- 2.5	2.78	161.5	58.1	778	200	80	60	23
QABNP	2.6	135.3	52.0	1160	400	60	30	18
QBNTP- MP11	2.85	145	50.9	1410	200	80	100	24
40%-PPT-c- PmpP	2.19	148.6	67.9	1210	400	60	110	25
PTF6- QAPTP	2.54	142.7	56.2	849	300	80	80	26
OHPTP- 10TBB	2.01	136	67.7	639	300	60	26	27
P(4PA- co2PA)-47	2.07	87	42.0	400	200	50	100	28
BOC-TMA	2.21	151.3	68.5	546	100	60	110	17
qPBN-CA40	1.81	122	67.4	603	200	60	30	6
Cr-QPPV- 2.51	2.51	135.5	54.0	1270	400	60	100	29

conductivity (σ), normalized conductivity (σ /IEC) and fuel cell performance.

References

1. J. Jung, Y. S. Park, D. J. Hwang, G. H. Choi, D. H. Choi, H. J. Park, C.-H. Ahn, S.

S. Hwang and A. S. Lee, J. Mater. Chem. A, 2023, 11, 10891-10900.

- J. H. Chen, X. B. Yue, Y. S. L. Choo, Z. Yu, X. H. Wang, X. L. Gao, W. T. Gao, Q. G. Zhang, A. M. Zhu and Q. L. Liu, *J. Power Sources*, 2023, 570, 233014.
- T. Wang, Y. Zhao, S. Wang, S. Cheng, S. Yang, H. Wei and Y. Ding, J. Power Sources, 2023, 557, 232590.
- 4. H. M. Kim, C. Hu, H. H. Wang, J. H. Park, N. Chen and Y. M. Lee, *J. Membr. Sci.*, 2022, **644**, 120109.
- W. Song, X. Liang, H. Zhang, X. Liu, X. Zhang, L. Wu, X. Ge and T. Xu, *J. Mater. Chem. A*, 2022, 10, 21503-21511.
- L. Ma, L. Li, M. Yuan, L. Bai, A. Zhang, X. Yan, G. He and F. Zhang, ACS Sustain. Chem. Eng., 2022, 10, 5748-5757.
- N. Chen, J. H. Park, C. Hu, H. H. Wang, H. M. Kim, N. Y. Kang and Y. M. Lee, J. Mater. Chem. A, 2022, 19, 3678–3687.
- 8. X. Wang and R. G. H. Lammertink, J. Mater. Chem. A, 2022, 10, 8401-8412.
- X. Zhou, L. Wu, G. Zhang, R. Li, X. Hu, X. Chang, Y. Shen, L. Liu and N. Li, J. Membr. Sci., 2021, 631, 119335.
- 10. S. Xu, W. Wei, X. Su and R. He, Chem. Eng. J., 2023, 455, 140776.
- 11. M. Liu, X. Hu, B. Hu, L. Liu and N. Li, J. Membr. Sci., 2022, 642, 119966.
- 12. X. Wang, X. Qiao, S. Liu, L. Liu and N. Li, J. Membr. Sci., 2022, 653, 120558.
- J. Liu, L. Gao, X. Ruan, W. Zheng, X. Yan and G. He, *Chem. Eng. J.*, 2023, 471, 144547.
- W. Yuan, L. Zeng, T. Zhang, Y. Zhou, J. Wang, S. Jiang, L. Li, Q. Liao and Z. Wei, *Adv. Funct. Mater.*, 2023, **33**, 2307041.
- 15. F. Xu, Y. Chen, X. Cao, J. Li, B. Lin, N. Yuan and J. Ding, *J. Power Sources*, 2022, **545**, 231880.
- X. Wang, W. Chen, T. Li, X. Yan, Y. Zhang, F. Zhang, X. Wu, B. Pang, J. Li and G. He, *J. Mater. Chem. A*, 2021, 9, 7522-7530.
- 17. N. Xie, T. Wang, S. Du, Q. Weng, K. Zheng, T. Zhang, X. Ning, P. Chen, X. Chen and Z. An, *J. Power Sources*, 2023, **574**, 233121.
- 18. W. T. Gao, X. L. Gao, W. W. Gou, J. J. Wang, Z. H. Cai, Q. G. Zhang, A. M. Zhu

and Q. L. Liu, J. Membr. Sci., 2022, 655, 120578.

- 19. Q. Liu, S. Zhang, L. Tian, J. Li, W. Ma, F. Wang, Z. Wang, J. Li and H. Zhu, *J. Power Sources*, 2023, **564**, 232822.
- Q. Liu, W. Ma, L. Tian, J. Li, L. Yang, F. Wang, Z. Wang, J. Li, Z. Wang and H. Zhu, J. Power Sources, 2022, 551, 232105.
- G. Xu, J. Pan, X. Zou, Z. Jin, J. Zhang, P. Fang, Q. Zhang, Z. Sun and F. Yan, *Adv. Funct. Mater.*, 2023, 33, 2302364.
- J. Zhang, K. Zhang, X. Liang, W. Yu, X. Ge, M. A. Shehzad, Z. Ge, Z. Yang, L. Wu and T. Xu, *J. Mater. Chem. A*, 2021, 9, 327-337.
- 23. X. Li, B. Zhang, J. Guo, Y. Chen, L. Dai, J. Zheng, S. Li and S. Zhang, *J. Mater. Chem. A*, 2023, **11**, 10738-10747.
- W. Ting Gao, X. Lang Gao, Y. Shuen Lann Choo, J. Jun Wang, Z. Hong Cai, Q. Gen Zhang, A. Mei Zhu and Q. Lin Liu, *Chem. Eng. J.*, 2023, 466, 143107.
- Y. Zhang, F. Zhang, Y. Chen, L. Sun, C. Wei, H. Zhang, H. Zhang, B. Ye, L. Wu, X. Ge and T. Xu, *Chem. Eng. J.*, 2023, 455, 140938.
- Z. Yu, W. T. Gao, Y. J. Liu, Q. G. Zhang, A. M. Zhu and Q. L. Liu, J. Colloid Interface Sci., 2023, 651, 404-414.
- 27. X. Su, S. Nan, W. Wei, S. Xu and R. He, J. Membr. Sci., 2023, 684, 121843.
- T. Jiang, C. Wu, Y. Zhou, S. Cheng, S. Yang, H. Wei, Y. Ding and Y. Wu, J. Membr. Sci., 2022, 647, 120342.
- 29. F. Zhang, Y. Zhang, L. Sun, C. Wei, H. Zhang, L. Wu, X. Ge and T. Xu, *Angew. Chem. Int. Ed.*, 2023, **62**, e202215017.