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1 The data and descriptors used in the present study

To illustrate the classification process, Figure S1 is provided, making the predictions in order from Category-1 to Category-4.

Figure S2 shows the 33 elements in the data and their frequencies of occurrence in the 541 samples. These elements spread over a
large range, including refractory metals, light metals, transition metals, nonmetals and rare earth element etc. As there are 541 alloys in
total and some alloy systems only comprise one or two alloys, thus we only list a part of the alloy systems, as shown in Table S1. There
are 37 alloy systems in the table and different systems contain different amount of alloys. Moreover, to further confirm the diversity of
our alloys, we have also evaluated the change of chemical compositions in several alloy systems (Figure S3), that is, the Al-Co-Cr-Fe-Ni,
Mo-Nb-Ti-V-Zr and Cr-Cu-Fe-Mn-Ni with a relatively large amount of alloys and the constitutive elements are very different. Figure S4
shows the distribution of the 541 alloys, the majority of the alloys distribute closely and only several points deviate from them, they are
AlLiMgZnSn, Al80Li5Mg5Zn5Sn5, Al80Li5Mg5Zn5Cu5, and AlCoCuNiTiZn, respectively.

There are three kinds of empirical descriptors, as listed in Table S2. Specifically, 26 atomic descriptors, 5 thermodynamic descriptors
and 2 theoretical descriptors. For each descriptor, both the corresponding description and abbreviation are given.

Fig. S1 The process of high entropy alloys phase structure prediction.
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Table S1 Typical alloy systems in the raw data. The number in ’( )’ represents the amount of alloys in related systems.

Element System Element System

Light metal +
3d transition metal

AlCoCrFeNi(24)
Light metal/nonmetal +

refractory metal

HfMoNbTiZrSi(5)
AlCoCrFeMnNi(11) AlMoNbTiV(5)
AlCoCrCuFeNiTi(11) AlMoTaTiV(2)
AlCoCrFeNiTi(17) AlHfNbTaTiZr(9)
AlFeMnNiTi(3)

Light metal/nonmetal +
3d transition metal

AlCuMgMnZnSi(1)
AlCrCuFeMnNi(7) AlCuMgSiZn(10)
AlCoCrFeNiV(4) AlCoCrFeNiSi(5)
AlCoCrCuFeNiV(12) CoCrFeMnNiC(4)
AlCoFeNi(4) AlCCoCrFeNi(8)
AlCrCuFeNi(8)

Others

FeMnMoCrWCB(3)

3d transition metal

CoCrFeMnNi(6) CoCrHfFeNi(6)
CrCuFeMnNi(13) CoCrFeNbNi(9)
CoCrFeNiV(6) CoCrCuFeNiNb(4)
CrCuFeMnV(4) ZrTiCuNiBeAl(4)

Refractory metal

MoNbTaTiW(4) LaCeAlNiCuCo(4)
NbTaTiZr(7) FeCoCrMoCBY(4)
MoNbTiVZr(20) ZrTiCuNiBeFe(4)
HfMoNbTaTiZr(4) NdAlNiCuFe(4)
HfMoNbTiZr(12) ...

Fig. S2 Statistics of occurrence frequency of 33 elements in 541 high entropy alloys.

Fig. S3 The change of chemical compositions in several typical systems. (a)Al-Co-Cr-Fe-Ni, (b)Mo-Nb-Ti-V-Zr and (c)Cr-Cu-Fe-Mn-Ni.
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Table S2 List of descriptors used in this article.

Category Description Abbreviation Formulation

Atomic
Descriptors

Atomic Number AN

P = ∑
n
i=1 Ci ∗Pi

δP =
√

∑
n
i=1 Ci ∗ (1− Pi

P )2

∆P = max[Ci ∗ (1− Pi
P )2]−min[Ci ∗ (1− Pi

P )2]

Atomic Radius r
Covalent Radius rcov
Van Der Waals Radius rvan
Atomic Volume AV
Molar Volume MV
Pauling Electronegativity χP
Valence Electron Concentration V EC
Allred Rochow Electronegativity χA
Heat of Vaporization HV
First Ionization Energy FIE
Second Ionization Energy SIE
Electron Affinity EA
Relative Atomic Mass RAM
Melting Point Temperature Tm
Boiling Point Temperature Bm
Density ρ

Cross Section CS
Specific Heat Capacity SHC
Enthalpy of Fusion EF
Enthalpy of Vaporization EV
Enthalpy of Atomization EA
Thermal Conductivity TC
Resistivity RΩ

Bulk Modulus BM
Thermal Expansion T E

Theoretical
Descriptors

Xe parameter Xe Xe = 4.12∗δ r
√

BM∗AV
kB∗Tm

Xc parameter Xc Xc = 2∗
√

δ∆Hm
kB∗Tm

Thermody-
namic
Descriptors

Mixing enthalpy ∆Hm ∆Hm = 4∑
n
i=1,i< j Hi jCiC j

δ∆Hm δ∆Hm =
√

∑
n
i=1.i< j CiC j(Hi j−∆Hm)2

Mixing entropy ∆Sm ∆Sm =−R∑
n
i=1 CilnCi

Λ parameter Λ Λ = ∆Sm
δ r2

Ω parameter Ω Ω = Tm∗∆Sm
|∆Hm|

Footnotes: (i) In the above formulas, R represents the molar gas constant with a value of 8.314 J/(mol·K), kB represents the Boltzman constant with a value of
1.38*10−23(J/K), Ci and Pi represent the atomic fraction and the value of atomic descriptor of the ith element. (ii) Xe and Xc stand for the extended atomic size difference
and chemical bond misfit, respectively. These two attributes can quantify the potential energy landscape brought about by the chemical and mechanical interaction among
constituent elements.

Fig. S4 Principal component analysis of 541 high-entropy alloy samples using chemical composition as input.
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2 The effect of mathematic operators and descriptor space size on the phase prediction accuracy
The final descriptor space size is determined by the number of original descriptors and mathematic operators, together with the times
the operators will be used. The size of the descriptor space after expansion is roughly given by #Φn = (#Φ0)

2n×(#Ĥ2)
2n−1, where Φ0

is the initial descriptor space and #Φ0 is the corresponding number of descriptors in Φ0, and Ĥ2 and #Ĥ2 represent the operator space
and the number of binary operators used, respectively. In this study, all the 85 descriptors were used instead of ranking and selecting
the descriptors with feature selection methods such as the Pearson correlation analysis and gradient boosting tree. Besides, we used
three unary operators and five binary operators mentioned in subsection 2.3. Therefore, #Φ0=85 and #Ĥ2=5. In addition, n represents
the operator iteration, sepcifically, n=1 means that the operator is used only once and the resultant descriptor is given by, e.g. x1∗x2.
Similarly, when the operator is used twice (n=2), the descriptor form is analogous to (x1+x2)∗(x1-x2). By setting the operator iteration
n with a value of 2, the expanded descriptor space size #Φn can reach 109, which is quite huge for the next computation by SIS and SO.
With n further increases, the descriptor space size expands exponentially and the new descriptors obtained will be too complicated to
understand.

Suppose the initial descriptors, mathematic operators and their iterations are fixed, the most key factor affecting the prediction
accuracy and computational efficiency is the size of subspace that contains optimal descriptors ranked and selected by SIS. In general,
the larger the subspace, the higher the possibility to find optimal descriptors for phase prediction. However, the whole descriptor
space is rather huge (∼105 for n=1, and ∼109 for n=2) and it is not realistic to enumerate every descriptor. Thus, to balance the
computational resource required and the prediction accuracy, we first examine the dependence of prediction accuracy on the descriptor
subspace size.

Figure S5(a) and (b) show the change of prediction accuracy with the descriptor subspace size. For simplicity, n=1 is used as an
example. In each of the four categories, the accuracy slightly increases and tends to a stable value with increasing subspace size. This
suggests that an optimal subspace with a critical size is adequate to capture the information of the whole space. Thus, the use of such
a much smaller subspace can save computational resource without sacrificing the prediction accuracy. To be specific, from Category-1
to Category-4 the stable subspace size are 5000, 1000, 1000 and 5000, as listed in Table S3. The prediction accuracy as a function of
subspace size is also investigated for n=2 and the optimal size is listed in Table S3, there is a similar tendency to Figure S4(a).

In addition to the descriptor subspace size, another important factor is the mathematic operators iterations, i.e., the times operators
are used. The operator iterations not only affect the form of new descriptors and the resultant prediction accuracy, but also the size of
the whole descriptor space. With the optimized subspace size in Table S3, we examine how the prediction accuracy changes with n.
Figure S4(c) plots the best prediction accuracy for Category-1 to Category-4, except for n=1 and 2, n=0 is also included as comparison,
i.e., no operators are used. For each category, the dataset is randomly divided into a training data and a test data with a ratio of 4:1,
to check the generalizability of the learned descriptors. Overall, the accuracies for all the four categories increase with increasing n.
For Category-1 and Category-4, the accuracies can reach a value ∼90% when n equal to 0 and increase slightly with n. However, the
accuracies are improved adequately for Category-2 and Category-3 with n. Specifically, the accuracy for Category-2 is optimized from
∼50% to ∼75% with n changes from 0 to 2. For Category-3, the accuracy for n=0 and 2 is ∼60% and ∼80%, respectively. Furthermore,
the accuracies in the test data agree well with that in the training data, indicating the good generalizability of newly constructed
descriptors for phase prediction of HEAs.

Table S3 The optimized subspace size for the 2D descriptors. The 105 and 109 mean the size of total descriptor space with n=1 and n=2, respectively

Category n=0 n=1 n=2
Category-1 85/85 5000/105 20000/109

Category-2 85/85 1000/105 20000/109

Category-3 85/85 1000/105 1000/109

Category-4 85/85 5000/105 20000/109
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Fig. S5 Determination of important parameters of SISSO algorithm. (a) and (b) are the prediction accuracy varies with the descriptor subspace size
for the 2D descriptors when n=1 (mathematic operators are used once) and n=2 (mathematic operators are used twice). (c) The prediction accuracy
as a function of operator iterations (the times the operators are used).
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3 The best 2D descriptors for phase prediction on test set
Figure S6 shows the phase prediction performance of the best 2D descriptors on the test set, the results agree with that in the training
data in Figure 2 in the main text. Several samples are outside the convex hulls, this can be ascribed to the division of training data
and test data. The random division cannot guarantee that the upper/lower limits of the descriptors in the test data are covered by that
in the training data. In order to obtain prediction accuracy, the outside samples are labelled by calculating the distance to two convex
hulls.

Fig. S6 The best 2D descriptors for phase prediction of test set. (a) to (d) represent the result for Category-1 to Category-4, respectively.
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4 Data point statistics for the overlapping part of the convex hulls
The points in the overlapping region in Category-1 and Category-4 in the training set are listed in Table S4. In addition, due to the
excessive data in the overlapping regions of Category-2 and Category-3, they are shown in data2.csv and data3.csv, respectively.

Table S4 The training data located in the Category-1 and Category-4 overlapping regions

Category-1 Phase structure Category-4 Phase structure
AlCoCrCuNiTi Crystal Al0.3CrFe1.5MnNi BCC
Mo0.5NbHf0.5ZrTiSi0.9 Crystal AlNbTiV FCC
AlCoCrCuFeNiTi Crystal Al0.59CoCrFeNi FCC
ZrTiHfCuNiFe Crystal
AlCoFeNiTiVZr AM
FeMoNiTiVZr AM
AlFeNiTiVZr AM
Ni42Ti20Zr20.5Al8Cu5Si4.5 AM
AlCoCrCu0.5FeNiSi AM
CoCuFeNiTiVZr AM
CoCrCuFeNiTiVZr AM
AlCrTaTiZr AM
Al8Cu7Ni19Zr66 AM
Zr17Ta16Ti19Nb22Si26 AM
AlMoNbSiTaTiVZr AM
Be18Cu9Ni8Ti65 AM
AlCoCrCu0.5FeNiTi AM
Al10Ni40Cu5Ti17Zr28 AM
CoCrFeMoNiTiVZr AM
Al10Ni40Cu6Ti16Zr28 AM
Ti50Zr10Cu20Ni20 AM
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5 Cluster analysis of the overlapped samples in Category-2 and Category-3
We conduct principal component analysis and unsupervised cluster analysis on the overlapped samples in Category-2 and Category-3,
as shown in Figure2 (b) and (c) in the main text. In Figure S7, the purple and green ellipses represent the two clusters learned by
K-means based on the first two principal components. In each cluster, the samples do not belong to a certain phase, indicating that
there is no clear tendency underlying the overlapped samples.

Fig. S7 Unsupervised cluster analysis of the overlapped samples in Category-2 (a) and Category-3 (b). The x and y axes represent the first two
principal components calculated by the linear combination of empirical descriptors, respectively.
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6 The prediction accuracies of empirical descriptors based 2D maps for Category-2
The most commonly used six empirical descriptors (δ r, ∆Hm, Ω, ∆Sm, VEC and δ χP) are employed for phase prediction of Category-2.
The random combination of these six descriptors gives up to 15 descriptors pairs. For each descriptor pair, the prediction accuracy is
calculated using the same convex hull method. Table S5 lists the accuracies for the 15 descriptor pairs. Figure S8 shows the phase
prediction performance of the descriptor pairs, for simplicity, the results for 4 descriptor pairs are merely presented.

Table S5 The 15 commonly used descriptor pairs and their accuracies for phase prediction of Category-2

Empirical descriptor Accuracy (%) Empirical descriptor Accuracy (%)
δ r & ∆Hm 26.3 δ r & Ω 29.5
δ r & ∆Sm 13.0 δ r & δ χP 8.5
δ r & V EC 16.4 ∆Sm & ∆Hm 32.9
∆Sm & Ω 33.1 ∆Sm & δ χP 11.3
∆Sm & V EC 20.4 ∆Hm & Ω 30.9
∆Hm & δ χP 17.8 ∆Hm & V EC 24.9
Ω & δ χP 31.4 Ω & V EC 33.4
δ χP & V EC 12.7

Journal Name, [year], [vol.],1–17 | 9



Fig. S8 Four of fifteen descriptor pairs for phase prediction of Category-2 are presented as examples, (a) δ r & ∆Hm, (b) δ r & ∆Sm, (c) δ r & δ χP,
(d) Ω & VEC.
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7 The prediction accuracies of empirical descriptors based 2D maps for Category-3
The 15 descriptor pairs are also generally used for Category-3. Thus, the corresponding accuracies are calculated with the same convex
hull method and listed in Table S6. In addition, Figure S9 shows the phase prediction performance of the descriptor pairs, for simplicity,
the results for 4 descriptor pairs are merely presented.

Table S6 The 15 commonly used descriptor pairs and their accuracies for phase prediction of Category-3

Empirical descriptor Accuracy (%) Empirical descriptor Accuracy (%)
δ r & ∆Hm 21.4 δ r & Ω 15.8
δ r & ∆Sm 19.9 δ r & δ χP 40.2
δ r & V EC 47.7 ∆Sm & ∆Hm 15.4
∆Sm & Ω 7.1 ∆Sm & δ χP 39.5
∆Sm & V EC 46.2 ∆Hm & Ω 4.9
∆Hm & δ χP 38.3 ∆Hm & V EC 47.0
Ω & δ χP 37.2 Ω & V EC 47.7
δ χP & V EC 52.6
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Fig. S9 Four of fifteen descriptor pairs for phase prediction of Category-3 are presented as examples. (a) δ r & VEC, (b) ∆Hm & VEC, (c) δ χP &
VEC, (d) ∆Sm & VEC.
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8 The calibration of prediction accuracies for 1D descriptors
Figure S10 shows the 4 descriptors with calibration accuracy larger than 90% for Category-1, and Figure S11 shows the 3 descriptors
with calibration accuracy larger than 90% for Category-4.

Fig. S10 The calibration of prediction accuracy for the 1D descriptors (n=0), for Category-1. (a) δ r, (b) δ χA, (c) Xe, (d) δSIE. The green vertical
line is used for the calibration and the y-axis is set as random numbers to avoid the overlap of samples.
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Fig. S11 The calibration of prediction accuracy for the 1D descriptors (n=0), for Category-4, (a) MV, (b) AV, (c) χA. The green vertical line is used
for the calibration and the y-axis is set as random numbers to avoid the overlap of samples.
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9 Analysis and experimental test of new alloy compositions.

Although Al-Co-Cr-Cu-Fe-Ni and V-Zr-Mo-Nb-Ti are alloy systems present in the raw data, which is different from the raw data, as shown
in Figure S12. This paper respectively focuses on analyzing the effect of changes in the element content of Al, Cu and V, Zr respectively.
For each alloy, the prediction is made from Category-1 to Category-4, sequentially, as shown in Figure S1.

We have measured the backscattering electron images of Al-Cu-Co-Cr-Fe-Ni alloys using SEM. As show in Figure S13(a)-(d), there is
no minor phases in all the four alloys. In addition, we also synthesized four alloys consisting of Hf, Mo, Nb, Ta and W, to again validate
the performance of the new descriptors. To our best knowledge, this system has not been reported or synthesized before. Figure S14
shows the XRD measured phase structures of these alloys, which agree well with the predictions.

Fig. S12 Comparison of the alloy compositions in (a) AlxCuy(CoCrFeNi)(100−x−y) and (b) VxZry(MoNbTi)(100−x−y) systems. The gray lines represent
the initial compositions, and the blue lines are experimental data.

Fig. S13 The SEM backscattering electron images of AlxCuy(CoCrFeNi)(100−x−y) alloys, (a) Al10Cu20(CoCrFeNi)70, (b) Al15Cu15(CoCrFeNi)70, (c)
Al20Cu10(CoCrFeNi)70, (d) Al25Cu5(CoCrFeNi)70.
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Fig. S14 The experimental and predicted results of Hf-Mo-Nb-Ta-W HEAs system.
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10 The frequency of empirical descriptors for Category-2 in different training and test data
We have randomly divided the initial data for another four times in Category-2. Figure S15 shows the first 10 empirical descriptors that
have higher frequency of occurrence in the top 100 descriptors.

Fig. S15 The appearance frequency of empirical descriptors in Category-2 with different data division.
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