Electronic Supplementary Information (ESI)

Electrochemically Engineered Domain: Nickel– Hydroxide/Nickel Nitride Composite for Alkaline HER Electrocatalysis

Chikaodili E. Chukwuneke,^a Kenta Kawashima,^a Hao Li,^b Raul A. Marquez,^a Yoon Jun Son,^c Lettie A. Smith,^a Hugo Celio,^d Graeme Henkelmana,^{e,f,g} and C. Buddie Mullins*^{a,c,d,f,g}

^aDepartment of Chemistry, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
^bAdvanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
^cMcKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
^dTexas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
^cOden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
^eCenter for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
^eH2@UT, The University of Texas at Austin, Austin, Texas 78712, United States

*Corresponding author.

E-mail address: mullins@che.utexas.edu

Fig. S1 Digital photographs of pristine (a) NF and (b) Ni₃N/NF.

Fig. S2 EDX spectra of pristine (a) Ni₃N/NF and (b) NF.

Fig. S3 XRD pattern of Ni₃N/NF after long-term HER testing.

Fig. S4 (a) Ni 2p, (b) N 1s, and (c) Fe 2p XPS spectra of Ni₃N/NF after long-term HER testing.

Fig. S5 CV activation plots for Ni₃N/NF: (a) 1-50 CV cycles, (b) 51-100 CV cycles, (c) 101-250 CV

cycles, and (d) 251-500 CV cycles.

Fig. S6 LSV curves of Ni₃N/NF after CV activation with different cycle numbers: 0-500 cycles.

Fig. S7 Tafel slopes of Ni₃N/NF after CV activation with different cycle numbers: 0-500 cycles.

Fig. S8 (a) XRD pattern and (b) SEM images of 50 CV-activated Ni_3N/NF .

Fig. S9 (a) Ni 2p, (b) N 1s, and (c) Fe 2p XPS spectra of 50 CV-activated Ni₃N/NF.

Fig. S10 (a) XRD pattern and (b) SEM images of 500 CV-activated Ni_3N/NF .

Fig. S11 (a) Ni 2p, (b) N 1s, and (c) Fe 2p XPS spectra of 500 CV-activated Ni₃N/NF.

Fig. S12 Non-faradaic CV curves of (a) 0, (b) 50, (c) 100, (d) 250, and (e) 500 CV-activated Ni₃N/NF samples.

Fig. S13 Bode plots of (a) 0, (b) 50, (c) 100, (d) 250, and (e) 500 CV-activated Ni₃N/NF samples.

Fig. S14 Nyquist plots for 50 CV-activated Ni₃N/NF before and after long-term HER testing.

Fig. S15 (a) XRD pattern and (b) SEM images of 50 CV-activated Ni₃N/NF after long-term HER testing.

Fig. S16 (a) Ni 2p, (b) N 1s, and (c) Fe 2p XPS spectra of 50 CV-activated Ni_3N/NF after long-term HER testing.

Fig. S17 (a) Ni 2p and (b) O 1s XPS spectra of NiO/NF.

Fig. S18 \sim 56 h HER chronopotentiometry tests at -20 mA/cm² for Ni(OH)₂-Ni₃N/NF and LSV curves before and after the chronopotentiometry (inset).

Table S1 An alkaline HER activity comparison (at a cathodic current density of 50 mA/cm²) of pristine Ni_3N/NF and electrochemically engineered $Ni(OH)_2-Ni_3N/NF$ (after 50 CV cycles) in this work with previously reported similar electrocatalysts

This work pristine Ni ₃ N η @50 mA/cm ² = 171.93 \pm 3.8 mV		
After 50 CV cycles $\eta@50 \text{ mA/cm}^2 = 164 \pm 1.2 \text{ mV}$		
Sample Name	$\eta@50 \text{ mA/cm}^2 \text{ (mV)}$	Reference
Ni ₃ N/NF	~210	1
Ni ₃ N/NF	~220	2
Ni ₃ N _{1-x} /NF	~240	3
Ni ₃ N/NF	~200	4
Ni-S/NF	~350	5
Ni-S-OH/NF	~270	5
Ni ₃ N	~300	6
Ni ₃ N/NF	~210	7

Table S2 A alkaline HER activity comparison (at a cathodic current density of 100 mA/cm²) of pristine Ni_3N/NF and electrochemically engineered $Ni(OH)_2-Ni_3N/NF$ (after 50 CV cycles) in this work with previously reported similar electrocatalysts

This work pristine Ni ₃ N η @ 100mA/cm ² = 207.27 \pm 3.06 mV			
After 50 CV cycles η @ 100mA/cm ² = 192.27 ± 1.53 mV			
Sample Name	$\eta@100 \text{ mA/cm}^2 \text{ (mV)}$	Reference	
Ni ₃ N/NF	~300	1	
Ni ₃ N/NF	~250	2	
Ni ₃ N _{1-x} /NF	~350	3	
Ni ₃ N/NF	~300	7	
Ni-S/NF	~410	5	
Ni-S-OH/NF	~310	5	
Ni ₃ N	~350	6	

References

- Shalom, M.; Ressnig, D.; Yang, X.; Clavel, G.; Patrick Fellinger, T.; Antonietti, M. Nickel Nitride as an Efficient Electrocatalyst for Water Splitting. *J. Mater. Chem. A* 2015, *3* (15), 8171–8177. https://doi.org/10.1039/C5TA00078E.
- (2) Xing, Z.; Li, Q.; Wang, D.; Yang, X.; Sun, X. Self-Supported Nickel Nitride as an Efficient High-Performance Three-Dimensional Cathode for the Alkaline Hydrogen Evolution Reaction. *Electrochimica Acta* 2016, *191*, 841–845. https://doi.org/10.1016/j.electacta.2015.12.174.
- (3) Liu, B.; He, B.; Peng, H.-Q.; Zhao, Y.; Cheng, J.; Xia, J.; Shen, J.; Ng, T.-W.; Meng, X.; Lee, C.-S.; Zhang, W. Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a High-Efficiency Electrocatalyst for Hydrogen Evolution. *Adv. Sci.* 2018, 5 (8), 1800406. https://doi.org/10.1002/advs.201800406.
- (4) Liu, W.; Xia, T.; Ye, Y.; Wang, H.; Fang, Z.; Du, Z.; Hou, X. Self-Supported Ni3N Nanoarray as an Efficient Nonnoble-Metal Catalyst for Alkaline Hydrogen Evolution Reaction. *Int. J. Hydrog. Energy* 2021, *46* (53), 27037–27043. https://doi.org/10.1016/j.ijhydene.2021.05.188.
- (5) Anantharaj, S.; Sugime, H.; Noda, S. Surface Amorphized Nickel Hydroxy Sulphide for Efficient Hydrogen Evolution Reaction in Alkaline Medium. *Chem. Eng. J.* 2021, 408, 127275. https://doi.org/10.1016/j.cej.2020.127275.
- (6) Jiang, M.; Li, Y.; Lu, Z.; Sun, X.; Duan, X. Binary Nickel–Iron Nitride Nanoarrays as Bifunctional Electrocatalysts for Overall Water Splitting. *Inorg. Chem. Front.* 2016, 3 (5), 630–634. https://doi.org/10.1039/C5QI00232J.
- (7) Hu, S.; Feng, C.; Wang, S.; Liu, J.; Wu, H.; Zhang, L.; Zhang, J. Ni3N/NF as Bifunctional Catalysts for Both Hydrogen Generation and Urea Decomposition. *ACS Appl. Mater. Interfaces* 2019, *11* (14), 13168–13175. https://doi.org/10.1021/acsami.8b19052.