Supplementary Information

Direct Observation of Phase Transitions between delta- and alpha-Phase FAPbI3 via Defocused Raman Spectroscopy

Bernd K. Sturdza^{*}, Benjamin M. Gallant, Philippe Holzhey, Elisabeth A. Duijnstee, Marko W. von der Leyen, Harry C. Sansom, Henry J. Snaith, Moritz K. Riede, and Robin J. Nicholas^{*}

Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

E-mail: bernd.sturdza@physics.ox.ac.uk; robin.nicholas@physics.ox.ac.uk

1. Temperature dependent PL of FAPbI₃

Fig. S1: Temperature dependent Photoluminescence of FAPbI3 single crystals. Delta phase crystals can be converted back into the alpha phase by heating to temperatures above 420K at a heating rate of 3K/min, as can be seen by the change in PL peak position (highlighted in blue). Samples were excited with a 532nm laser.

2. Single Crystal X-ray Diffraction

Single crystal diffraction data were collected using an Oxford Diffraction (Agilent) SuperNova instrument with a molybdenum (0.71973 Å) microfocus X-ray tube. Unit cell indexation, detwinning, data integration, and reduction were performed using Rigaku CrysAlisPro software. The structures were solved and refined using SHELX-2013, implemented through Olex2 software. Structural and refinement parameters can be found in Tables S1 and S2. Images of the crystal structures are shown in Figure S2. FAPbI₃ crystals were found to be a two-component twin. The second twin component had a twin matrix of (0.6703 0.6620 -0.3384, -0.6677 0.3351 -0.6660, -0.3275 0.6716 0.6666) with respect to the first component. Twin components 1 and 2 contributed to 62(1)% and 38(1)% of the observed reflections, respectively. The structural solution was refined against the full data set (hklf5 file). No twinning was observed for the FAPbI₃-M crystals.

CIF files of the two crystal types investigated in this work have been submitted to the CCDC. The deposition numbers are 2299142 for FAPbI3 and 2299143 for FAPbI3-M.

Images of model (Figure S2)

Fig. S2. The crystal structures solved from single crystal X-ray diffraction measured on FAPbl₃ crystals, showing without (a) and with (b) the 100% thermal ellipsoids. Similarly, the crystal structures of FAPbl₃-M crystals, are shown without (c) and with (d) the 100% thermal ellipsoids. Both crystals are in the cubic α -phase, and the electronic distribution of the organic cation can be considered quasi-spherical due to rotational disorder. Structural and refinement parameters can be found in Tables S1 and S2, respectively.

	Atom	x	У	Z	Occupancy	Multiplicity	Equivalent Isotropic Displacement Parameters (Å ² ×10 ³)
FAPbl₃	Pb	0	0	0	1	1	30.1(10)
	I	0.5	0	0	1	3	84.1(17)
	С	0.5	0.5	0.5	1	1	110(60)
	Ν	0.58(1)	0.58(1)	0.58(1)	0.25	8	150(100)
FAPbl₃-M	Pb	0	0	0	1	1	36.6(4)
	I	0.5	0	0	1	3	89.4(6)
	С	0.5	0.5	0.5	1	1	170(40)
	Ν	0.5	0.5	0.337(6)	0.33	6	131(19)

Table S1. Structural models for FAPbI₃ and FAPbI₃-M crystals, refined against the single crystal X-ray diffraction data.

Table S2. Parameters of the crystal structure models refined against the single crystal X-raydiffraction data.

Identification code	exp_001_twin1_hklf5 (FAPbI ₃)	exp_246 (FAPbI₃-M)
Empirical formula	C I ₃ N ₂ Pb	C I ₃ N ₂ Pb
Formula weight	627.92	627.92
Temperature/K	293(2)	293(2)
Crystal system	cubic	cubic
Space group	Pm-3 ⁻ 7	Pm-3m
a/Å	6.36382(16)	6.35293(19)
b/Å	6.36382(16)	6.35293(19)
c/Å	6.36382(16)	6.35293(19)
α/°	90	90
β / °	90	90
γ/°	90	90
Volume/Å ³	257.724(19)	256.40(2)
Z	1	1
ρ _{calc} g/cm ³	4.046	4.067
µ/mm⁻¹	25.275	25.406
F(000)	261.0	261.0
Crystal size/mm ³	$0.2 \times 0.15 \times 0.1$	$0.1 \times 0.15 \times 0.25$
Radiation	Μο Κα (λ = 0.71073)	Μο Κα (λ = 0.71073)
20 range for data collection/°	6.402 to 59.1	9.074 to 57.526
Index ranges	$-8 \le h \le 7, -8 \le k \le 8, -8 \le l \le 7$	$-8 \le h \le 5, -6 \le k \le 5, -3 \le l \le 8$
Reflections collected	274	352
Independent reflections	274 [R _{sigma} = 0.0173]	91 [R _{int} = 0.0346, R _{sigma} = 0.0296]
Data/restraints/parameters	274/0/9	91/0/9
Goodness-of-fit on F ²	1.136	1.113
Final R indexes [I>=2σ (I)]	R ₁ = 0.0636, wR ₂ = 0.1659	$R_1 = 0.0224$, $wR_2 = 0.0388$
Final R indexes [all data]	R ₁ = 0.0656, wR ₂ = 0.1695	$R_1 = 0.0265$, $wR_2 = 0.0400$
Largest diff. peak/hole / e Å ⁻³	1.29/-1.26	0.42/-0.65

3. Spot size Measurements

Fig. S3: Laser spot size measurements for the two Raman configurations. The laser spot was moved across the edge of a Silicon wafer with a micrometre stage. The limits of the $1/e^2$ intensity profile are highlighted in red and the diameter of the spot is highlighted in blue. **a)** Data for the focused and **b)** defocused Raman setup.

Fig. S4: Molecular Raman modes of FA+ in FAPbI3 single crystals. The spectra were acquired with the defocused setup with a 50x600s acquisition time and combined at 1000cm⁻¹ after background subtraction. The four molecular vibrations and their theoretically expected positions are indicated in black.