Supporting Information

Mechanism of methanol synthesis from CO₂ on Cu/CeO₂ and Cu/W-

CeO₂: A DFT investigation into the nature of W-doping

Nana Ma, *, a Weiyi Cheng, a Changgeng Wei, b Shujun Li, a and Guisheng Zhang *, a

^aSchool of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Normal University, Xinxiang, Henan, 453007, China. E-mail: mann076@htu.edu.cn; zgs6668@yahoo.com.

^bBremen Center for Computational Materials Science, University of Bremen, 28359, Bremen, Germany.

Content

- Figure S1. The most stable structure of Cu_n (n = 1-10) clusters anchored at different sites on the surface of CeO₂-O_v.
- Figure S2. Most stable configuration for the chemisorption of CO_2 molecules at the Cu_n/CeO_2-O_v interface.
- Figure S3. Geometric structure and adsorption energy of Cu₈ on stoichiometric and partially reduced CeO₂ surfaces.
- Figure S4. The nine most stable geometries of W-doping on Cu₈/W-CeO₂-O_v.
- Figure S5. Top and side view of the optimized structures of the initial state (IS), transition state (TS) and final state (FS) involved in the H₂ dissociation path on Cu₈/CeO₂-O_v.
- Figure S6. The initial state (IS), transition state (TS) and final state (FS) of the direct dissociation of CO₂* into CO* and O* on Cu₈/CeO₂-O_v and Cu₈/W-CeO₂-O_v, observed from a top view and side view.
- Figure S7. Top and side view of the optimized structures for initial state (IS), transition state (TS) and final state (FS) involved in the higher energy pathway of the formate pathway on Cu₈/CeO₂-O_v.
- Figure S8. Top and side view of the optimized structures for initial state (IS), transition state (TS) and final state (FS) involved in the generation of H_2O^* before the final step (CH₂OH* \rightarrow CH₃OH*) of the RWGS+CO pathway on Cu₈/CeO₂-O_v.
- Figure S9. The oxygen vacancy formation step on the Cu₈/W-CeO₂-O_v surface involves the top view and side view of the initial state (IS), transition state (TS) and final state (FS) of CH₃O* hydrogenation to CH₃OH* and OH* hydrogenation to H₂O*.
- **Table S1**. The adsorption energy (E_{ads} , eV) and Bader charge (e) of Cu_n clusters with different sizeson the most stable adsorption configuration of CeO2-Ov surface.
- Table S2. Structural parameters of CO₂ adsorption on different Cu₈/W-CeO₂-O_v models.
- **Table S3.** DFT Calculated reaction energies (E_r/eV) and activation barriers (E_a/eV) for the direct dissociation of CO₂ on Cu₈/CeO₂-O_v and Cu₈/W-CeO₂-O_v Surface.
- **Table S4**. DFT Calculated reaction energies (E_r/eV) and activation barriers (E_a/eV) for elementary reactions involved in methanol synthesis from CO₂ hydrogenation on Cu₈/CeO₂-O_v

Surface.

- Table S5. Optimized geometric parameters and adsorption energies of all reaction intermediates on Cu_8/CeO_2-O_v .
- **Table S6.** DFT Calculated reaction energies (E_r/eV) and activation barriers (E_a/eV) for elementaryreactions involved in methanol synthesis from CO2 hydrogenation on Cu8/W-CeO2-OvSurface.
- **Table S7.** The density derived electrostatic and chemical (DDEC) charge analysis for Cu_8/CeO_2 - O_v , Cu_8/W -CeO₂- O_v , and H₂COOH adsorption on both surfaces.
- **Table S8**. The density derived electrostatic and chemical (DDEC) charge analysis for Cu₈/CeO₂-O_v, Cu₈/W-CeO₂-O_v, and CO₂ adsorption on both surfaces.
- **Table S9.** The ICOHP value of all adsorbed bonds belonging to the most stable H2COOH and CO_2 adsorption configuration on Cu_8/CeO_2 - O_v and Cu_8/W - CeO_2 - O_v .
- Table S10. TOF values of methanol generated by different catalysts.

Cu₁/CeO₂-O_v

Figure S1. The most stable structure of Cu_n (n = 1-10) clusters anchored at different sites on the surface of CeO₂-O_v, and the values of relative energy are presented at the bottom of the graph. Only a part of the CeO₂-O_v surface is displayed, and Ce, Cu, and O atoms are denoted by cyan, blue and red spheres, respectively.

Figure S2. Most stable configuration for the chemisorption of CO_2 molecules at the Cu_n/CeO_2 -O_v interface.

Figure S3. Geometric structure and adsorption energy of Cu_8 on stoichiometric and partially reduced CeO_2 surfaces. n in Cu_8/CeO_2 -nO_v is some surface oxygen vacancies in CeO₂ support. Cu_8 adsorption energy (E_{ads}) appears at the bottom, and the unit of adsorption energy is eV.

Figure S4. The nine most stable geometries of W-doping on Cu_8/W -CeO₂-O_v (a–i). The values of relative energy are presented at the bottom of the graph.

Figure S5. Top and side view of the optimized structures of the initial state (IS), transition state (TS) and final state (FS) involved in the H_2 dissociation path on Cu_8/CeO_2-O_v .

Figure S6. The initial state (IS), transition state (TS) and final state (FS) of the direct dissociation of CO_2^* into CO^* and O^* on Cu_8/CeO_2-O_v and $Cu_8/W-CeO_2-O_v$, observed from a top view and side view.

Figure S7. Top and side view of the optimized structures for initial state (IS), transition state (TS) and final state (FS) involved in the higher energy pathway of the formate pathway on Cu_8/CeO_2-O_v .

Figure S8. Top and side view of the optimized structures for initial state (IS), transition state (TS) and final state (FS) involved in the generation of H_2O^* before the final step (CH₂OH^{*} \rightarrow CH₃OH^{*}) of the RWGS + CO pathway on Cu₈/CeO₂-O_v.

Figure S9. The oxygen vacancy formation step on the Cu_8/W -CeO₂-O_v surface involves the top view and side view of the initial state (IS), transition state (TS) and final state (FS) of CH₃O* hydrogenation to CH₃OH* and OH* hydrogenation to H₂O*.

System	E . DDEC charge of Cu atom		DDEC charge of Cu _n
System E_{ads}		DDEC charge of Cu atom	clusters
Cu ₁ /CeO ₂ -O _v	-3.02	+0.49	+0.49
Cu ₂ /CeO ₂ -O _v	-2.59	+0.11 +0.10	+0.21
Cu ₃ /CeO ₂ -O _v	-4.90	+0.06 +0.01 +0.01	+0.08
Cu ₄ /CeO ₂ -O _v	-5.47	+0.17 +0.15 +0.14 +0.10	+0.56
Cu ₅ /CeO ₂ -O _v	-5.79	-0.06 +0.08 +0.07 +0.29 +0.32	+0.70
Cu ₆ /CeO ₂ -O _v	-6.09	+0.14 +0.09 +0.17 +0.07 -0.03 -0.01	+0.43
Cu ₇ /CeO ₂ -O _v	-6.66	+0.16 +0.19 +0.10 +0.16 -0.02 +0.01	+0.60
Cu ₈ /CeO ₂ -O _v	-6.52	+0.11 +0.13 +0.06 +0.11 +0.13 -0.04 -0.04 -0.09	+0.37
Cu ₉ /CeO ₂ -O _v	-7.87	+0.12 -0.07 +0.12 -0.02 -0.01 +0.13 +0.08 +0.08 +0.14	+0.57
Cu ₁₀ /CeO ₂ -O _v	-8.76	+0.16 +0.04 +0.15 -0.01 -0.01 +0.16 +0.18 +0.16 +0.16 -0.03	+0.96

Table S1. The adsorption energy (E_{ads} , eV) and Bader charge (e) of Cu_n clusters with different sizes on the most stable adsorption configuration of CeO₂-O_v surface.

Table S2. Structural parameters of CO_2 adsorption on Cu_8/CeO_2-O_v and $Cu_8/W-CeO_2-O_v$ models.

Sample	<i>d</i> (Cu–C)	d (Ce–O _{down})	<i>d</i> (C–O _{up})	d (C–O _{down})
Cu_8/CeO_2-O_v	2.01	2.60	1.22	1.28
$a-Cu_8/W-CeO_2-O_v$	2.03	2.59	1.22	1.26
b-Cu ₈ /W-CeO ₂ -O _v			1.17	1.19
$\text{c-Cu}_8/\text{W-CeO}_2\text{-O}_v$	2.03	2.65	1.22	1.25

Table S3. DFT Calculated reaction energies (E_r/eV) and activation barriers (E_a/eV) for the direct dissociation of CO₂ on Cu₈/CeO₂-O_v and Cu₈/W-CeO₂-O_v Surface.

	2 0 2	• 0	2 1	
Sample	reaction		$E_{\rm r}({\rm eV})$	$E_{\rm a}({\rm eV})$
Cu ₈ /CeO ₂ -O _v	$\mathrm{CO}_2^* + * \rightarrow \mathrm{CO}^* + \mathrm{O}^*$		+0.50	1.54
Cu ₈ /W-CeO ₂ -O _v	$\mathrm{CO}_2^* + * \to \mathrm{CO}^* + \mathrm{O}^*$		+0.59	2.01

Step	reaction	$E_{\rm r}({\rm eV})$	$E_{\rm a}({\rm eV})$
R ₁	$\mathrm{CO}_2{}^* + 2\mathrm{H}^* \longrightarrow \mathrm{HCOO}^* + \mathrm{H}^*$	-1.29	0.02
R_2	$\mathrm{CO}_2{}^* + 2\mathrm{H}^* \to \mathrm{COOH}^* + \mathrm{H}^*$	-0.70	1.87
R ₃	$\text{HCOO}^* + \text{H}^* \rightarrow \text{H}_2\text{COO}^* + ^*$	+0.90	1.62
R_4	$\mathrm{HCOO}^* + \mathrm{H}^* \rightarrow \mathrm{HCOOH}^* + ^*$	+1.04	1.08
R_5	$\rm HCOOH^{*} + H^{*} \rightarrow \rm H_{2}\rm COOH^{*} + ^{*}$	-0.85	0.19
R ₆	$\mathrm{H_{2}COO}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{H_{2}COOH}^{*} + ^{*}$	+0.58	1.78
R ₇	$\mathrm{H_{2}COO}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{H_{2}COHO}^{*} + ^{*}$	+1.03	2.93
R_8	$\mathrm{H_{2}COOH^{*} + H^{*} \rightarrow H_{2}CO^{*} + H_{2}O^{*}}$	+1.12	1.51
R ₉	$\mathrm{H_2CO}^* + \mathrm{H_2O}^* \rightarrow \mathrm{H_2CO}^* + \mathrm{H_2O}(g) + *$	+0.06	
R ₁₀	$\mathrm{H_2CO}^* + \mathrm{H}^* \longrightarrow \mathrm{H_3CO}^* + *$	-0.70	0.55
R ₁₁	$\mathrm{H_3CO}^{\boldsymbol{*}} + \mathrm{H}^{\boldsymbol{*}} \rightarrow \mathrm{CH_3OH}^{\boldsymbol{*}} + \boldsymbol{*}$	+0.40	1.18
R ₁₂	$CH_{3}OH^{\ast} \rightarrow CH_{3}OH(g) + \ast$	+1.27	
R ₁₃	$\mathrm{CO}_2{}^* + 2\mathrm{H}{}^* \to \mathrm{CO}{}^* + \mathrm{OH}{}^*$	-0.69	1.45
R ₁₄	$\mathrm{CO}^{\boldsymbol{*}} + \mathrm{OH}^{\boldsymbol{*}} + \mathrm{H}^{\boldsymbol{*}} \rightarrow \mathrm{CHO}^{\boldsymbol{*}} + \mathrm{OH}^{\boldsymbol{*}} + \boldsymbol{*}$	+0.19	0.96
R ₁₅	$\mathrm{CO}^* + \mathrm{OH}^* + \mathrm{H}^* \rightarrow \mathrm{COH}^* + \mathrm{OH}^* + *$	+1.73	
R ₁₆	$\mathrm{CO}^* + \mathrm{OH}^* + \mathrm{H}^* \rightarrow \mathrm{CO}^* + \mathrm{H}_2\mathrm{O}^* + *$	+0.63	1.23
R ₁₇	$\mathrm{CHO}^{\pmb{\ast}} + \mathrm{OH}^{\pmb{\ast}} + \mathrm{H}^{\pmb{\ast}} \rightarrow \mathrm{CH}_{2}\mathrm{O}^{\pmb{\ast}} + \mathrm{OH}^{\pmb{\ast}} + {\pmb{\ast}}$	+0.14	0.84
R ₁₈	$\mathrm{CHO}^{\boldsymbol{*}} + \mathrm{OH}^{\boldsymbol{*}} + \mathrm{H}^{\boldsymbol{*}} \rightarrow \mathrm{CH}_{2}\mathrm{O}^{\boldsymbol{*}} + \mathrm{H}_{2}\mathrm{O}^{\boldsymbol{*}} + \boldsymbol{*}$	+0.42	1.58
R ₁₉	$CH_2O^* + OH^* + H^* \rightarrow CH_2OH^* + OH^* + *$	-0.45	1.35
R ₂₀	$\mathrm{CH}_{2}\mathrm{O}^{*} + \mathrm{OH}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{CH}_{3}\mathrm{O}^{*} + \mathrm{OH}^{*} + *$	+0.14	
R ₂₁	$\mathrm{CH_2OH}^* + \mathrm{OH}^* + \mathrm{H}^* \rightarrow \mathrm{CH_3OH}^* + \mathrm{OH}^* + *$	-0.25	1.25
R ₂₂	$\mathrm{CH_2OH}^* + \mathrm{OH}^* + \mathrm{H}^* \rightarrow \mathrm{CH_2OH}^* + \mathrm{H_2O} * + *$	0.25	1.62
R ₂₃	$OH^{\boldsymbol{*}} + H^{\boldsymbol{*}} \rightarrow H_2O^{\boldsymbol{*}} + {\boldsymbol{*}}$	+0.48	1.19
R ₂₄	$\mathrm{CO}_3{}^* + 2\mathrm{H}^* \rightarrow \mathrm{HCO}_3{}^* + \mathrm{H}^*$	-0.09	0.87
R ₂₅	$\mathrm{HCO}_3{}^* + \mathrm{H}{}^* \rightarrow \mathrm{H}_2\mathrm{CO}_3{}^* + {}^*$	+0.92	1.07
R ₂₆	$H_2CO_3{}^{\boldsymbol{*}} \rightarrow H_2CO_3(g) + {}^{\boldsymbol{*}}$	+1.81	

Table S4. DFT Calculated reaction energies (E_r/eV) and activation barriers (E_a/eV) for elementary reactions involved in methanol synthesis from CO₂ hydrogenation on Cu₈/CeO₂-O_v Surface.

Table S5. Optimized geometric parameters and adsorption energies of all reaction intermediates on Cu₈/CeO₂-O_v. η -X, X_{bl}, X_a represent the bond length (unit: Å) of the substrate-the nearest adsorbate, the internal bond length (unit: Å) of the adsorbed species, and the internal bond angle (unit: °) of the adsorbed species, respectively. E_{ads} represents the adsorption energy (unit: eV) of the reaction intermediate on the substrate. H^{OH} represents reduction of hydrogen in OH on CeO₂ surface.

2							
species	η-X	$d(\eta$ -X)	X_{bl}	$d(X_{bl})$	Xa	angle	$E_{\rm ads}$
H_Cu	Cu-H	1.624					-0.30
H_CeO ₂	О-Н	0.975					-1.43
ОН	Ce-O	2.593	O-H	0.975			-4.52
H_2O_Cu	Cu-O	2.021	O-H	1.001	∠HOH	105.9	-0.06
H ₂ O_CeO ₂	Ce-O	2.813	O-H	0.986	∠НОН	100.5	-1.01
CO ₂	Cu-C	2.008	C-O _{up}	1.224	∠OCO	132.6	-0.85
	Ce-O	2.599	C-O _{down}	1.277			
нсоо	Cu-O	2.002	C-H	1.111	∠oco	123.3	-4.54
	Ce-O	2.806	C-O _{up}	1.260	∠HCO _{up}	119.2	
			C-O _{down}	1.283	∠HCO _{down}	117.5	
СООН	Cu-O	1.912	O-H	0.978	∠oco	112.2	-3.56
	Ce-O	2.762	C-O _{up}	1.360	∠СОН	108.0	
			C-O _{down}	1.269			
H ₂ COO	Cu-O	1.870	C-H	1.113	∠HCH	108.5	-1.56
	Ce-O	2.635	C-O _{up}	1.423	∠OCO	108.7	
		2.629	C-O _{down}	1.410			
нсоон	Ce-O	2.733	C-H	1.105	∠СОН	109.5	-1.39
			O-H	1.016	∠HCO	114.6	
			C-0	1.284	∠OCO	120.6	
H ₂ COOH	Cu-O	1.974	C-H	1.107	∠HCH	110.3	-3.63
	Ce-O	2.723	O-H	0.985	∠HOC	106.9	
			C-O _{up}	1.517	∠OCO	111.3	
			C-O _{down}	1.356			
H ₂ CO	Cu-C	2.014	C-H	1.110	∠HCH	112.9	-1.66
	Ce-O	2.699	C-0	1.350	∠HCO	115.1	
CH ₂ O	Cu-C	2.132	C-H	1.119	∠HCH	115.8	-0.14
	Н ^{ОН} -О		C-0	1.259	∠HCO	120.2	
CH ₃ O	Ce-O	2.560	С-Н	1.111	∠HCH	106.9	-3.50
			C-0	1.417	∠HCO	112.0	
CH ₃ OH_CeO ₂	Ce-O	2.913	С-Н	1.101	∠HCH	110.6	-1.27
			C-0	1.452	∠HCO	110.7	
			O-H	0.992	∠HOC	107.0	
CH ₃ OH_Cu	H ^{OH} -O	1.908	C-H	1.104	∠HCH	109.0	-0.09
			C-0	1.430	∠HCO	106.8	
			O-H	0.974	∠HOC	109.1	
CO	Cu-C	1.853	C-O	1.153			-0.97

СНО	Cu-C	1.913	C-H	1.130	∠HCO	116.8	-1.95
	H ^{OH} -O	1.927	C-O	1.223			
CH ₂ OH	Cu-C	1.940	C-H	1.105	∠HCH	109.4	-4.39
	H ^{OH} -O	1.842	C-O	1.445	∠HCO	110.3	
			О-Н	0.975	∠HOC	108.3	
CO ₃	Ce-O	2.601	C-O _a	1.286	$\angle O_a CO_b$	125.7	-13.81
	Cu-O	2.076	C-O _b	1.277	∠O _b CO _c	118.5	
			C-O _c	1.348	$\angle O_a CO_c$	115.3	
HCO ₃	Ce-O	2.733	О-Н	0.980	∠HO _a C	106.8	-7.99
			C-O _a	1.358	$\angle O_a CO_b$	120.1	
			C-O _b	1.262	$\angle O_b CO_c$	125.0	
			C-O _c	1.290	$\angle O_a CO_c$	114.8	
H ₂ CO ₃	Ce-O	2.740	О-Н	1.020	∠HO _a C	111.1	-1.81
			C-O _a	1.324	$\angle O_a CO_b$	119.1	
			C-O _b	1.346	∠ObCOc	119.9	
			C-O _c	1.240	$\angle O_a CO_c$	121.0	

Table S6. DFT Calculated reaction energies (E_r/eV) and activation barriers (E_a/eV) for elementary reactions involved in methanol synthesis from CO₂ hydrogenation on Cu₈/W-CeO₂-O_y Surface.

Step	reaction	$E_{\rm r}$ (eV)	E_{a} (eV)
R_1	$HCOO^* + H^* \rightarrow HCOOH^* + *$	+0.88	1.06
R ₂	$H_2COOH^* + H^* \rightarrow H_2CO^* + H_2O^*$	+0.81	1.01
R3	$CH_3O^* + H^* \rightarrow CH_3OH^* + *$	+0.31	1.22
R ₄	$CO_2^* + H^* \rightarrow CO^* + OH^*$	-0.13	1.99
R ₅	$OH^* + H^* \longrightarrow H_2O^* + *$	+0.44	1.39

Table S7. The density derived electrostatic and chemical (DDEC) charge analysis for Cu_8/CeO_2-O_v , $Cu_8/W-CeO_2-O_v$, and H_2COOH adsorption on both surfaces.

	С	O _a	O _b	H _a	H_{b}	H _c	H ₂ COOH (total)
Cu ₈ /CeO ₂ -O _v	+0.30	-0.46	-0.81	0.03	0.05	0.36	-0.53
Cu ₈ /W-CeO ₂ -O _v	+0.30	-0.51	-0.84	0.02	0.04	0.33	-0.66

Table S8. The density derived electrostatic and chemical (DDEC) charge analysis for Cu₈/CeO₂-O_v, Cu₈/W-CeO₂-O_v, and CO₂ adsorption on both surfaces.

	С	O _a	Ob	CO ₂ (total)
Cu ₈ / CeO ₂ -O _v	+0.46	-0.38	-0.63	-0.55
Cu ₈ /W-CeO ₂ -O _v	+0.49	-0.38	-0.57	-0.46

Table S9. The ICOHP value of all adsorbed bonds belonging to the most stable H_2COOH and CO_2 adsorption configuration on Cu_8/CeO_2 - O_v and Cu_8/W - CeO_2 - O_v .

H ₂ COOH	Ce-O _{down}	C-O _{up}	Cu-O _{up}	
Cu ₈ /CeO ₂ -O _v	-0.70	-4.03	-0.74	
Cu ₈ /W-CeO ₂ -O _v	-0.84	-4.65	-0.16	
CO_2	Ce-O _{down}	C-O _{down}	Cu-C	Cu-O _{up}
			1.0.6	0.04
Cu_8/CeO_2-O_v	-1.34	-6.35	-1.06	-0.04

Catalyst	T/K	TOF/s ⁻¹	Reference
Cu ₈ /CeO ₂ -O _v	523	7.1×10 ⁻⁶	this work
Cu ₈ /W-CeO ₂ -O _v	523	7.1×10 ⁻⁵	this work
In ₂ O ₃ -O _v (110)	473~573	1×10 ⁻⁵ ~1×10 ⁻¹	[1]
In ₂ O ₃ -O _v (111)	473~573	1×10 ⁻² ~1	[1]
Zr1-In ₂ O ₃ (110)	550	1×10 ⁻⁴	[2]
In ₂ O ₃ (110)	550	1×10-5	[2]
Zr3-In ₂ O ₃ (110)	550	1×10 ⁻⁸	[2]
Pt ₈ /In ₂ O ₃	423~580	1×10 ⁻⁹ ~1×10 ⁻²	[3]
Ga ₃ /Ni ₅	500	3.26×10 ⁻¹⁴	[4]
Cu (211)	523	2.73×10-7	[5]
Cu (211) single-Zn-step	523	3.07×10 ⁻⁵	[5]

 Table S10. TOF values of methanol generated by different catalysts.

[1] Z. Zhou, B. Qin, S. Li, Y. Sun, Phys. Chem. Chem. Phys., 2021, 23, 1888-1895.

[2] K. Li, Z. Wei, Q. Chang, S. Li, Phys. Chem. Chem. Phys., 2023, 25, 14961–14968.

[3] X. Wang, J. Pan, H. Wei, W. Li, J. Zhao, Z. Hu, J. Phys. Chem. C, 2022, 126, 1761–1769.

[4] Q. Tang, Z. Shen, C.K. Russell, M. Fan, J. Phys. Chem. C, 2018, 122, 315–330.

[5] D.Y. Jo, M.W. Lee, H.C. Ham, K.-Y. Lee, J. Catal., 2019, 373, 336–350.