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Computational Details

The particle swarm optimization (PSO) method within the evolutionary algorithm as 

implemented in the Crystal structure Analysis by Particle Swarm Optimization (CALYPSO) code1 

was employed to find the lowest energy structures of VC4 monolayers. Unit cells containing 1, 2, 

and 4 formula units (f.u.) were considered. In the first step, random structures with certain 

symmetries are built, in which atomic coordinates are generated by the crystallographic symmetry 

operations. Local optimizations using the VASP code were done with the conjugate gradients 

method and stopped when Gibbs free energy changes became smaller than 1×10-5 eV per cell. 

After processing the first-generation structures, 60% of them with lower Gibbs free energies are 

selected to construct the next generation structures by PSO. 40% of the structures in the new 

generation are randomly generated. A structure fingerprinting technique of bond characterization 

matrix is applied to the generated structures, so that identical structures are strictly forbidden. 

These procedures significantly enhance the diversity of the structures, which is crucial for 

structural global search efficiency. In most cases, structural searching simulations for each 

calculation were stopped after generating 1000 ~ 1200 structures (e.g., about 20 ~ 30 generations).
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Fig. S1 Structures of VC4 after 10 ps steps of AIMD at (a) 500 K and (b) 1000 K.
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Fig. S2 Adsorption of Na on monolayer VC4 at (a) A1-site, (b) A2-site, (c) A3-site, (d) A4-site, (e) 

A2-site, (f) A4-site, (g) A1-site, and (h) A3-site.
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Fig. S3 Diffusion energy barrier and their corresponding path of NaxVC4 at x = 2 and 5.
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Fig. S4 Partial density of states of (a) Na1VC4, (b) Na2VC4, (c) Na3VC4, (d) Na4VC4, and (e) 

Na5VC4.



7

Fig. S5 Energy fluctuations versus time steps of NaxVC4 (x = 1, 2, 3, 4, and 5) at 300 K after 10 

ps.
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Fig. S6 Structural snapshots of NaxVC4 (x = 1, 2, 3, 4, and 5) at 300 K after 10 ps.
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Fig. S7 Optimized geometry of various defects in VC4 monolayer. (a) VC1, (b) VC2, (C) VV, (d) 

VVC vacancy.

Fig. S8 (a) The inequivalent adsorption sites of 2D VC4 with Vv vacancy, named as B1, B2, B3, 

B4, and B5. The side view of B2 and B3 are denoted as B2/3 due to their close positions in the z 

direction. The considered migration paths of Na diffusion on the 2D VC4 with Vv vacancy. (b) 

The corresponding diffusion energy barrier profiles of path I and path II.
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Fig. S9 Average voltages of different Na concentrations in NaxV0.917C4 (x = 1-5).
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Fig. S10 Optimized structures of NaxV0.917C4 (x = 1-5).
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Table S1 Comparative study of the calculated voltage, energy barrier, and Na storage capacity of 

VC4 monolayer with previously reported 2D materials.

Material Voltage
(V)

Diffusion 
barrier (eV)

Capacity 
(mAh g-1)

Ref.

Li-CuC6 0.34 0.41 1188 2

Li-Mo2C 0.14 0.13 526 3

Li-VC2 0.40 0.09 1430 4

K-SnC 0.41 0.17 410 5

K-PC6 0.64 0.29 780 6

Na-CP3 0.53 0.35 2298 7

Na-ZrC2 0.25 0.02 932 8

Na-TiC3 0.18 0.20 1278 9

Li-NiC3 0.17 0.50 1698 10

Na-V2C 0.49 0.14 300 11

Na-Twin-
Graphene

1.09 0.198 496 12

NaxVC4 0.51 0.32 1353 This 
work
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Table S2 Adsorption energies of Na at different sites on V0.917C4 monolayer.

Site Adsorption energies
(eV/Na atom)

B1-site - 0.73

B2-site - 0.82

B3-site - 0.65

B4-site - 0.48

B5-site - 0.61
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