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1. Computational details
1.1 Single parabolic band model

The Pisarenko curves and the effective mass of n-type PbTe can be modeled by the single 

parabolic band (SPB) model, and the SPB model is based on the following equations:1

Seebeck coefficient:
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Hall carrier concentration:
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where kB is the Boltzmann constant, ħ is the reduce Planck constant, η is the reduced Fermi 

level, and r denotes the scattering factor and equals -1/2 here assuming that the acoustic scattering 

mechanism dominates. The Fermi integral is given by:
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1.2 Single Kane band model 

The thermoelectric-transport properties of n-type PbTe can be modeled by adopting the single 

Kane band (SKB) model. The transport coefficients are determined by the equations as follows:2, 3
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Hall Carrier mobility:
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Power factor:

𝑃𝐹 =
2𝑁𝑉ℏ𝑘𝐵

2𝐶𝑙

𝜋𝐸 2
𝑑𝑒𝑓

1

𝑚 ∗
𝐼

(1𝐹 1
−2

0𝐹 1
−2

−𝜉)20𝐹 1
−2 (eq. S8)

 has a similar form as the Fermi integral:
𝑛𝐹𝑚
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Where ξ is the reduced chemical potential, Nv is the band degeneracy (NV=4 for n-type PbTe),4 

K is the band anisotropy (K=3.6 for n-type PbTe),5 kB is the Boltzmann constant, ħ is the reduce 

Planck constant,  is the inertial mass ( ),6 is the longitudinal 𝑚 ∗
𝐼 𝑚 ∗

𝐼 = 3𝑚 ∗
𝑑 /(𝑁2/3

𝑉 (2𝐾1/3 + 𝐾−2/3)) 𝐶𝑙

elastic ( =7.1×1010 Pa for n-type PbTe),7, 8  is the reduced energy of electronic state,  is the 𝐶𝑙 𝜀 𝛼

reciprocal reduced band gap ( ), Eg is the band gap , Eg = 0.18eV + 0.0004 eV/K×T , 𝛼 = 𝑘𝐵𝑇/𝐸𝑔

 is the deformation potential coefficient. 𝐸𝑑𝑒𝑓

1.3 Calculation of lattice thermal conductivity κlat

The lattice thermal conductivity (κlat) of the Ag0.03Pb1-xMnxTe samples was calculated by the 

modified Debye-Callaway model, which can be expressed by:
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Here,  is the average speed of phonon,  and  denote the 𝜐 = 31/3(𝑣−3
𝑙 + 2𝑣−3

𝑡 )−1/3 𝑣𝑙 𝑣𝑡

longitudinal and transverse speeds of sound respectively, ħ is the reduced Planck constant,  is the 

Debye temperature, x is the relation of ħω/kBT, ω is the phonon frequency, and τtot is the total phonon 

scattering relaxation time. The total phonon relaxation time τtot for the Ag0.03Pb1-xMnxTe samples 

consists of Umklapp process, normal process, point defects, grain boundary, and nanoprecipitates 

(U+N+PD+GB+NP) by the following equation:9
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The phonon scattering relaxation time for respective mechanism can be expressed as follows:

Umklapp phonon scattering:
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Normal phonon scattering:
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Point defect scattering:
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Grain boundary scattering:

−1
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Nanoprecipitates scattering:
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In above equations,  is the average atomic volume,  is the average atomic mass, γ is the �̅� �̅�

Grüneisen parameter, AN is the ratio between normal process and Umklapp phonon scattering.

1.4 Calculation of quality factor B

The quality factor B of the Ag0.03Pb1-xMnxTe samples was calculated by:10 
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2. Supplementary Figures

Figure S1. ZT of the main components of dynamic doped PbTe systems.11-16



Figure S2. κlat at 323 K of the main components of dynamic doped PbTe systems.11-16 the Lorenz 
number calculation methods for representative samples of each system: single parabolic band (SPB) 
model: PbTe:Cr/Ag2Te, PbTe:Ag, PbTe:Cu/MnTe, PbTe:Ga; single Kane band (SKB) model: 
PbTe:In/I, PbTe:Cu.



Figure S3. EDS spectra obtained from Ag2Te secondary phase.



Figure S4. The Hall carrier concentration nH and the Hall carrier mobility μH as a function of x in 
Ag0.03Pb1-xMnxTe.



Figure S5. DSC curve of Ag0.03Pb0.95Mn0.05Te, and the peak occurs at 593 K



Figure S6. Temperature-dependent effective masses m* of PbTe and Ag0.03Pb1-xMnxTe (x = 0.02, 
0.04, 0.05), the black scatter values are from the reported I doped PbTe material.6



Figure S7. Temperature-dependent power factor PF for n-type Ag0.03Pb1-xMnxTe samples.



Figure S8. Temperature-dependent electrical thermal conductivity κe for n-type Ag0.03Pb1-xMnxTe 
samples. 



Figure S9. Temperature-dependent thermal diffusivity (D) for n-type Ag0.03Pb1-xMnxTe samples.



Figure S10. Temperature-dependent heat capacity (Cp) for n-type Ag0.03Pb1-xMnxTe samples.



Figure S11. The calculated quality factor B at 323 K, 523 K, 623 K and 773 K for n-type 
Ag0.03Pb1-xMnxTe samples.



Figure S12. Thermal stability and reproducibility of (a) electrical conductivity ; (b) Seebeck 
coefficient S, (c) total thermal conductivity tot, and (d) figure of merit ZT for the high-performance 
n-type Ag0.03Pb0.95Mn0.05Te sample.



Figure S13. The average ZT (ZTavg) for Ag0.03Pb1-xMnxTe samples. 



3. Supplementary tables
Table S1. The sample densities of Ag0.03Pb1-xMnxTe (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06) 
measured by Archimedes method. 

Sample No. Measured density (g cm-3) Relative density (%)

x=0 8.17 99.15

x=0.01 8.099 98.29

x=0.02 8.098 98.28

x=0.03 8.003 97.12

x=0.04 8.087 98.14

x=0.05 8.037 97.53

x=0.06 8.167 99.11



Table S2. The input parameters based on the theoretical simulation of lattice thermal conductivity 
in this work.

Parameters Symbol Value Ref.

Gruneisen parameter γ 1.65 3

Debye temperature θD (K) 163 17

Average sound velocity v (m/s) 1720 17

Average atomic mass for PbTe M (kg) 2.78×10-25 18

Ratio of N- to U- process AN 2.9 19

Phenomenological parameter 65 18

Mole mass of Pb MPb (g/mol) 207.2 -

Mole mass of Te MTe (g/mol) 127.6 -

Mole mass of Ag MAg (g/mol) 107.8682 -

Mole mass of Mn MMn (g/mol) 54.938 -

Radius of Pb atom rPb (Å) 1.2 -

Radius of Ag atom rAg (Å) 1.26 -

Radius of Mn atom rMn (Å) 0.8 -
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