Supporting information

Hydrogen-bonded organic framework-derived, flower-on-fiber-

like, carbon nanofiber electrode for supercapacitors

Woo Jin Mun, Bomi Kim, Seung Jae Moon and Jong Hak Kim*

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea

* To whom correspondence should be addressed

Tel: +82-2-2123-5757; Fax: +82-2-312-6401

E-mail: jonghak@yonsei.ac.kr

Fig. S1. (a, b) SEM images of MCA.

Fig. S2. FT-IR spectra of MA, CUA, and MCA.

Fig S3. (a, b) SEM images of PAN nanofibers.

Fig. S4. SEM images of (a, b) PAN@MCA_{0.125}, (c, d) PAN@MCA_{0.375}, and (e, f) PAN@MCA_{0.5} nanofibers.

Fig. S5. (a, b) Raman spectra of MCA, PAN, and PAN@MCA nanofibers.

Fig. S6. Stress-strain curves of c-PAN@MCA nanofibers.

Fig. S7. (a, b) SEM images of c-PAN nanofibers.

Fig. S8. SEM images of (a, b) c-PAN@MCA $_{0.125}$, (c, d) c-PAN@MCA $_{0.375}$, and (e, f) c-PAN@MCA $_{0.5}$ nanofibers.

Fig. S9. TEM images of (a, b) c-PAN, (c, d) c-PAN@MCA $_{0.125}$, (e, f) c-PAN@MCA $_{0.375}$, and (g, h) c-PAN@MCA $_{0.5}$ nanofibers.

Fig. S10. (a) TGA curves of PAN, PAN@MCA nanofibers, and MCA. (b) Experimental and theoretical remaining weight at 700 °C with various MCA contents.

Fig. S11. XRD patterns at low angle and FWHM values of (a) c-PAN. (b) c-PAN@MCA_{0.125}, (c) c-PAN@MCA_{0.25}, (d) c-PAN@MCA_{0.375}, and (e) c-PAN@MCA_{0.5}.

Fig. S12. Contact angle measurements for (a) c-PAN, (b) c-PAN@MCA $_{0.125}$, and (c) c-PAN@MCA $_{0.25}$.

Fig. S13. Enlarged views of high-resolution XPS C1s spectra of (a) c-PAN, (b) c-PAN@MCA_{0.125}, (c) c-PAN@MCA_{0.25}, (d) c-PAN@MCA_{0.375}, and (e) c-PAN@MCA_{0.5}.

Fig. S14. (a) Nitrogen contents of c-PAN and c-PAN@MCA nanofibers from high-resolution XPS N1s spectra. (b) Oxygen contents of c-PAN and c-PAN@MCA nanofibers from high-resolution XPS O1s spectra.

Fig. S15. CV curves of (a) c-PAN, (b) c-PAN@MCA_{0.125}, (c) c-PAN@MCA_{0.375}, and (d) c-PAN@MCA_{0.5} at various scan rates.

Fig. S16. GCD curves of (a) c-PAN, (b) c-PAN@MCA_{0.125}, (c) c-PAN@MCA_{0.375}, and (d) c-PAN@MCA_{0.5} at various current densities.

Fig. S17. Relationships between the peak current and scan rate for (a) c-PAN, (b) c-PAN@MCA_{0.125}, (c) c-PAN@MCA_{0.375}, and (d) c-PAN@MCA_{0.5}.

Fig. S18. Capacitive contributions at a scan rate of 100 mV s⁻¹ for (a) c-PAN, (b) c-PAN@MCA_{0.125}, (c) c-PAN@MCA_{0.375}, and (d) c-PAN@MCA_{0.5}. (f) Capacitive contributions at various scan rates for (e) c-PAN, (f) c-PAN@MCA_{0.125}, (g) c-PAN@MCA_{0.375}, and (h) c-PAN@MCA_{0.5}.

Fig. S19. Electrochemical performances of c-PAN@MCA_{0.25} with different mass loadings measured in a three-electrode configuration in 6 M aqueous KOH electrolyte. (a) CV curves of c-PAN@MCA_{0.25} with different mass loadings at a scan rate of 100 mV s⁻¹. CV curves of c-PAN@MCA_{0.25} with mass loadings of (b) 2 mg cm⁻² and (c) 4 mg cm⁻² at various scan rates. (d) GCD curves of c-PAN@MCA_{0.25} with different mass loadings at a current density of 1 A g⁻¹. GCD curves of c-PAN@MCA_{0.25} with mass loadings of (e) 2 mg cm⁻² and (f) 4 mg cm⁻²

at various current densities. (g) Specific capacitances at various current densities for c-PAN@MCA_{0.25} with different mass loadings. (h, i) Nyquist plots of c-PAN@MCA_{0.25} with different mass loadings.

Fig. S20. Electrochemical performances of c-PAN@MCA_{0.25} with different annealing temperatures measured in a three-electrode configuration in 6 M aqueous KOH electrolyte. (a) CV curves of c-PAN@MCA_{0.25} with different annealing temperatures at a scan rate of 100 mV s⁻¹. CV curves of c-PAN@MCA_{0.25} with annealing temperatures of (b) 600, (c) 800, and (d) 900 °C at various scan rates. (e) GCD curves of c-PAN@MCA_{0.25} with different annealing temperatures at a current density of 1 A g⁻¹. GCD curves of c-PAN@MCA_{0.25} with mass loadings of (f) 600, (g) 800, and (h) 900 °C at various current densities. (i) Specific capacitances at various current densities for c-PAN@MCA_{0.25} with different annealing temperatures.

Fig. S21. (a, b) Nyquist plots of c-PAN@MCA_{0.25} with different annealing temperatures.

Fig. S22. (c, b) SEM images of ground c-PAN@MCA_{0.25} nanofiber.

Fig. S23. Electrochemical performance measured in a two-electrode configuration in 1 M aqueous Na₂SO₄ electrolyte. (a) CV curves for free-standing and ground c-PAN@MCA_{0.25}-based symmetric SC at a scan rate of 100 mV s⁻¹, respectively. (b) CV curves of ground c-PAN@MCA_{0.25}-based symmetric SC at various scan rates. (c) GCD curves for free-standing and ground c-PAN@MCA_{0.25}-based symmetric SC at a current density of 1 A g⁻¹, respectively. (d) GCD curves of ground c-PAN@MCA_{0.25}-based symmetric SC at various current densities. (e) Specific capacitances of free-standing and ground c-PAN@MCA_{0.25}-based symmetric SC at various and ground c-PAN@MCA_{0.25}-based symmetric SC at various current densities, respectively. (f) Ragone plot for free-standing and ground c-PAN@MCA_{0.25}-based symmetric SCs, respectively.

To measure the electrochemical performance of powder-type c-PAN@MCA_{0.25}, ground c-PAN@MCA_{0.25} was mixed uniformly with carbon black, and poly(vinylidene fluoride) with a mass ratio of 8:1:1 and then pasted onto the nickel foam (1 x 2 cm²). The active mass in each electrode was fixed at 1 mg cm⁻².

	$S_{\rm BET} ({ m m}^2 { m g}^{-1})$	$V_{\text{total}} \left(\text{cm}^3 \text{ g}^{-1} \right)$	$V_{\rm micro} ({\rm cm}^3 {\rm g}^{-1})$	$V_{\rm meso} ({\rm cm}^3 {\rm g}^{-1})$
c-PAN	7.1	0.027	0.026	0.001
c-PAN@MCA _{0.125}	335.1	0.211	0.084	0.127
c-PAN@MCA _{0.25}	403.1	0.358	0.212	0.146
c-PAN@MCA _{0.375}	368.5	0.321	0.187	0.134
c-PAN@MCA _{0.5}	347.6	0.463	0.346	0.117

Table S1. BET surface area (S_{BET}), total pore volume (V_{total}), micropore volume (V_{micro}) and mesopore volume (V_{meso}) of c-PAN and c-PAN@MCA nanofibers.

	C (at%)	N (at%)	O (at%)
c-PAN	87.8	8.8	3.4
c-PAN@MCA _{0.125}	83.4	11.9	4.7
c-PAN@MCA _{0.25}	82.1	13.5	4.4
c-PAN@MCA _{0.375}	81.3	14.7	4.0
c-PAN@MCA _{0.5}	80.6	15.4	4.0

Table S2. Atomic concentrations for c-PAN and c-PAN@MCA nanofibers.

Electrode sample name	Specific capacitance (three-electrode configuration)	Energy density	Power density	Mass loading	Reference
	338.6 F g ⁻¹ (1 A g ⁻¹)	11.4 Wh kg ⁻¹	344 W kg ⁻¹	1 mg cm ⁻²	
c-PAN@MCA _{0.25}	285.7 F g ⁻¹ (1 A g ⁻¹)	N/A	N/A	2 mg cm ⁻²	This work
	257.8 F g ⁻¹ (1 A g ⁻¹)	N/A	N/A	4 mg cm ⁻²	
CLCF	223.8 F g ⁻¹ (0.5 A g ⁻¹)	5.9 Wh kg ⁻¹	1200 W kg ⁻¹	1.2 mg cm ⁻²	1
MCF	105 F g ⁻¹ (5 mV s ⁻¹ , two- electrode configuration)	5.1 Wh kg ⁻¹	242 W kg ⁻¹	0.44 mg cm ⁻²	2
P-CNF	104 F g ⁻¹ (0.2 A g ⁻¹)	3.22 Wh kg ⁻¹	600 W kg ⁻¹	0.51 mg cm ⁻²	3
PHCNF30	239 F g ⁻¹ (1 A g ⁻¹)	5.28 Wh kg ⁻¹	500 W kg ⁻¹	2 mg cm ⁻²	4
C67 ₁₄ @PAN-OC	270 F g ⁻¹ (1 A g ⁻¹)	9.64 Wh kg ⁻¹	550 W kg ⁻¹	N/A	5
NHCF	302 F g ⁻¹ (0.5 A g ⁻¹)	N/A	N/A	1 mg cm ⁻²	6
UT-CNF	243 F g ⁻¹ (1 A g ⁻¹)	N/A	N/A	1.2-1.4 mg cm ⁻²	7
CACNF	202 F g ⁻¹ (0.1 A g ⁻¹)	N/A	N/A	1.5 mg cm ⁻²	8
NFMCNF	252.6 F g^{-1} (0.5 A g^{-1})	8.07 Wh kg ⁻¹	248 W kg ⁻¹	N/A	9
N-CNT@CF	367 F g ⁻¹ (0.5 A g ⁻¹)	5.5 Wh kg ⁻¹	254 W kg ⁻¹	1.0-1.2 mg cm ⁻²	10
NC-800	264 F g ⁻¹ (1 A g ⁻¹)	N/A	N/A	1.5 mg cm ⁻²	11
N-PCNFA	279 F g ⁻¹ (0.5 A g ⁻¹)	N/A	N/A	N/A	12
PAN/NOC (7:3)	394 F g ⁻¹ (1 A g ⁻¹)	13.6 Wh kg ⁻¹	500 W kg ⁻¹	1.67 mg cm ⁻² (powder)	13
HPCNFs-N	307.2 F g ⁻¹ (1 A g ⁻¹)	10.96 Wh kg ⁻¹	250 W kg ⁻¹	1.0 mg cm ⁻² (powder)	14
NSCPCNF-800	396 F g ⁻¹ (1 A g ⁻¹)	14.3 Wh kg ⁻¹	250 W kg ⁻¹	1.0 mg cm ⁻²	15

Table S3. Summary of the electrochemical performance of c-PAN@MCA $_{0.25}$ and the state-of-the-art carbon nanofiber electrodes.

References

1. Y. Cheng, L. Huang, X. Xiao, B. Yao, L. Yuan, T. Li, Z. Hu, B. Wang, J. Wan and J. Zhou, *Nano Energy*, 2015, **15**, 66-74.

2. Z. Liu, D. Fu, F. Liu, G. Han, C. Liu, Y. Chang, Y. Xiao, M. Li and S. Li, *Carbon*, 2014, **70**, 295-307.

3. Y. Liu, J. Zhou, L. Chen, P. Zhang, W. Fu, H. Zhao, Y. Ma, X. Pan, Z. Zhang, W. Han and E. Xie, *ACS Apple. Mater. Interfaces*, 2015, 7, 23515-23520.

4. J.-G Kim, H.-C. Kim, N. D. Kim and M.-S Khil, Compos. B Eng., 2020, 186, 107825.

5. C.-H Yang, Y.-C. Hsiao and L.-Y Lin, ACS Appl. Mater. Interfaces, 2021, 13, 41637-41648.

6. Y. Yao, H. Wu, L. Huang, X. Li, L. Yu, S. Zeng, X. Zeng, J. Yang and J. Zou, *Electrochim. Acta*, 2017, **246**, 606-614.

7. W. M. Chang, C. C. Wang and C. Y. Chen, *Electrochim. Acta*, 2019, 296, 268-275.

8. Q. Fan, C. Ma, L. Wu, C. Wei, H. Wang, Y. Song and J. Shi, RSC Adv., 2019, 9, 6419-6428.

9. W. Na, J. Jun, J. W. Park, G. Lee and J. Jang, J. Mater. Chem. A, 2017, 5, 17379-17387.

10. T. P. Mofokeng, Z. N. Tetana and K. I. Ozoemena, Carbon, 2020, 169, 312-326.

11. Q. Jiang, M. Liu, C. Shao, X. Li, H. Liu, X. Li and Y. Liu, *Electrochim. Acta*, 2020, **330**, 135212.

12. Y. Yang, Y.-x. Liu, Y Li, B.-w. Deng, B. Yin and M.-b Yang, J. Mater. Chem. A, 2020, 8, 17257.

13. H. Wang, H. Niu, H. Wang, W. Wang, X. Jin, H. Wang, H. Zhou and T. Lin, *J. Power Sources*, 2021, **482**, 228986.

14. L-F Chen, Y. Lu, L. Yu and X. W. Lou, Energy Environ. Sci., 2017, 10, 1777-1783.

15. Y. Li, G. Zhu, H. Huang, M. Xu, T. Lu and L. Pan, J. Mater. Chem. A, 2019, 7, 9040-9050

Supplementary movie 2_c-PAN@N