## Unraveling the Role of Single Atom Catalysts on the Charging Behavior of Nonaqueous Mg-CO<sub>2</sub> Batteries: A Combined Density Functional Theory and Machine Learning Approach

Raffiuzzaman Pritom<sup>a</sup>, Rahul Jayan<sup>a</sup> and Md Mahbubul Islam\*

Department of Mechanical Engineering, Wayne State University, Detroit, MI-48202, USA

<sup>a</sup> both authors contributed equally towards this work

\*Corresponding Author: gy5553@wayne.edu

| SACs | TM-N <sub>4</sub> | TM-N <sub>3</sub> S | $TM-N_2S_2$ |
|------|-------------------|---------------------|-------------|
|      | Å                 | Å                   | Å           |
| Sc   | 8.478             | 8.596               | 8.478       |
| Ti   | 8.420             | 8.550               | 8.703       |
| V    | 8.408             | 8.530               | 8.659       |
| Cr   | 8.370             | 8.517               | 8.635       |
| Mn   | 8.371             | 8.494               | 8.620       |
| Fe   | 8.348             | 8.468               | 8.590       |
| Со   | 8.329             | 8.449               | 8.577       |
| Ni   | 8.327             | 8.417               | 8.622       |
| Cu   | 8.380             | 8.459               | 8.486       |

Table S1. The computed lattice constants of 3d SACs doped  $N_4,\,N_3S$  and  $N_2S_2$  substrates

Table S2. The computed lattice constants of 4d SACs doped  $N_4,\,N_3S$  and  $N_2S_2$  substrates

| SACs | TM-N <sub>4</sub> | TM-N <sub>3</sub> S | TM-N <sub>2</sub> S <sub>2</sub> |
|------|-------------------|---------------------|----------------------------------|
|      | Å                 | Å                   | Å                                |
| Y    | 8.464             | 8.504               | 8.527                            |
| Zr   | 8.500             | 8.497               | 8.555                            |
| Nb   | 8.465             | 8.605               | 8.559                            |
| Мо   | 8.437             | 8.561               | 8.702                            |
| Tc   | 8.422             | 8.528               | 8.678                            |
| Ru   | 8.390             | 8.512               | 8.646                            |
| Rh   | 8.382             | 8.510               | 8.646                            |
| Pd   | 8.388             | 8.518               | 8.491                            |
| Ag   | 8.432             | 8.500               | 8.581                            |



Figure S1. The top and side views of the optimized geometric configurations of 3d SACs doped  $N_{\rm 4}$  environment



Figure S2. The top and side views of the optimized geometric configurations of 3d SACs doped  $N_3S$  environment



Figure S3. The top and side views of the optimized geometric configurations of 3d SACs doped  $N_2S_2$  environment



Figure S4. The top and side views of the optimized geometric configurations of 4d SACs doped  $\mathrm{N}_4$  environment



Figure S5. The top and side views of the optimized geometric configurations of 4d SACs doped  $N_3S$  environment



Figure S6. The top and side views of the optimized geometric configurations of 4d SACs doped  $N_2S_2$  environment



Figure S7. The computed charge transfer of TM, N and S on 3d and 4d SACs doped  $N_4$ ,  $N_3S$  and  $N_2S_2$  substrates



Figure S8. The calculated d-band center of both 3d and 4d SACs doped N<sub>4</sub>, N<sub>3</sub>S and N<sub>2</sub>S<sub>2</sub> substrates



Figure S9. The correlation of ionization energy of both 3d and 4d SACs with the number of d-electrons



Figure S10. The side views of the optimized geometric configurations of  $MgCO_3$  adsorbed on 3d and 4d SACs doped  $N_4$  environment



Figure S11. The side views of the optimized geometric configurations of  $MgCO_3$  adsorbed on 3d and 4d SACs doped  $N_3S$  environment

## 3d SACs@PP



















4d SACs@PP















Figure S12. The side views of the optimized geometric configurations of  $MgCO_3$  adsorbed on 3d and 4d SACs doped  $N_2S_2$  environment



Figure S13. Projected density of states (PDOS) of representative early (Sc), mid (Fe) and late (Cu) 3d-TM doped  $N_4$ ,  $N_3S$  and  $N_2S_2$  substrates



Figure S14. Projected density of states (PDOS) of representative early (Y), mid (Ru) and late (Ag) 4d-TM doped  $N_4$ ,  $N_3S$  and  $N_2S_2$  substrates



Figure S15. Projected density of states (PDOS) of MgCO<sub>3</sub> adsorbed Sc, Fe and Cu TM doped  $N_4$ ,  $N_3S$  and  $N_2S_2$  substrates.



Figure S16. Projected density of states (PDOS) of MgCO<sub>3</sub> adsorbed Y, Ru and Ag TM doped  $N_4$ ,  $N_3S$  and  $N_2S_2$  substrates.



Figure S17. The evaluation of mean square error along with the number of iterations in ANN model



Figure S18. Comparison of SHAP values to analyze the feature importance of ANN model